

Integer Prime Factorization with Deep Learning
Begaiym Murat

Suleyman Demirel University,

Kaskelen, Kazakhstan

begaiym.murat@nu.edu.kz

Shirali Kadyrov

Suleyman Demirel University,

Kaskelen, Kazakhstan

shirali.kadyrov@sdu.edu.kz

Ryszhan Tabarek

Suleyman Demirel University,

Kaskelen, Kazakhstan

181107007@stu.sdu.edu.kz

Abstract—Prime factor decomposition is a method that

is used in number theory and in cryptography, as well. The

security of the message depends on the difficulty of

factorization. In other words, to hack the RSA system,

factorization of N is needed, where N is a product of two

prime (generally large) numbers. This paper analyzes the

approaches which are already used to solve the problem,

and proposes a new method which is expected to increase

the efficiency of prime number factorization with the help of

neural networks. The results in this paper can be used to

develop and improve the security of cryptosystems.

Keywords—neural network; prime factorization; LSTM;

binary expansion; semiprimes

I. INTRODUCTION

Prime factorization, also known as prime number

decomposition, is a technique, widely used in

mathematics and other sciences as well. According to the

fundamental theorem of arithmetic, every positive integer

N (N > 1) can be factorized into a product of prime

numbers. So far, there is no efficient method found to

factorize large numbers, neglecting quantum

computations [1]. An attempt was made in 2009, where

researchers factorized 232-digit numbers which took

hundreds of machines and a couple of years to solve the

problem [2]. This leads to the assumption that factoring

bigger numbers might take much longer.

Cryptography is an area of study that considers

various techniques for secure communication. One of the

well-known public key cryptosystems is the Rivest,

Shamir and Adleman (RSA) cryptosystem, which is

based on semiprime factorization. A natural number N is

said to be semiprime if it is the product of two distinct

prime numbers. RSA happens to be one of the first public

key cryptosystems, which makes the encryption key

public, but keeps the decryption key private. This type of

system is also called a non-symmetric system, due to the

fact that the keys required for encryption and decryption

are different. For secure communication with RSA, the

receiver generates two large primes numbers p and q,

usually taken to be over 400 digits each. These numbers

are kept secret, while their product N=pq is made

publicly available. So, anyone wishing to send a secure

message to the receiver makes use of N to encrypt the

message and it can only be decrypted if two primes p and

q are known. In particular, the receiver can read the

message. The security of a message encrypted by the

RSA cryptosystem directly depends on the difficulty of

factorizing the given large (in practice is taken to be of

500 digit) natural number to its primes. The paper of M.

Mumtaz and L. Ping describes recent attacks on the RSA

and gives overview on the challenges [3].

The fundamental of algorithms is based on the

factorization problem; therefore, the method plays a

significant role in this area. Solving prime factorization

problems will make a contribution not only to

information security, but also will give benefit in other

sciences. For instance, the interest in this problem is high

in chemistry. Recently, researchers modelled an

algorithm on optimization of the surface energy potential

of molecules in a crystal based on computational

chemistry. Even though the cases were not realistic, the

results show that there is a potential of molecular

geometry optimization algorithm in the problem of prime

factorization [4]. One more related paper was published

recently in 2019. It is about factorizing values by

stochastic magnetic tunnel junctions. The results show

integer factorization up to 945 using probabilistic

computer utilizing probabilistic bits that was

implemented with stochastic nanomagnetic devices in a

neural-network-inspired electrical circuit operating at

room temperature [5].

II. LITERATURE REVIEW

The function N = p×q is known as a one-way

function. Evaluating N from the given p and q is not hard,

but the inverse of it, that is getting p and q from the given

N is much harder. In addition to that, factorizing N is

accepted to be as hard as finding out the decryption key

in RSA [6]. The first research on factorizing N using

neural networks was made in 2002 by G.C. Meletiou et

al. The training methods that were used are Standard

Back Propagation, Back Propagation with Variable

Stepsize, the Resilient Back Propagation and the On-Line

Adaptive Back Propagation. They conclude that the

training methods do not make a big difference for the

results. The actual important factors that affect the

efficiency are the approximation methods and network

architecture [6].

Another research that made a contribution on solving

this problem was made in 2005 [7]. A binary approach

together with neural networks was used in this paper. The

results showed that this method was able to improve the

performance of factorization; so, the efficiency of this

problem is a subject to change. The different

approximation was used, that is mapping N→p, while in

the first paper it was N→φ(N). Both of these mappings

can be used for approximation, but the recent one

appeared to be more efficient because of its output range

and decrease in time needed for validity. One more

difference was in the data structure. In that paper, a

different structure from decimal form was used, which is

a binary form. The assumption that was made to do that

was that the binary approach will give a more stable

network [7]. The neural network part of these papers is

using the feed-forward network, where there is one layer

for input, one for the output, and others between them are

hidden layers. According to the remarks, using one or two

hidden layers gives better results [6, 7]. The methods

which were used for training the network include the

Resilient Back Propagation, Standard Back Propagation,

Back Propagation with Variable Stepsize and On-Line

Adaptive Back Propagation. Although there was progress

in factorizing not so large numbers, decomposition of

larger integers into primes is still far from being efficient.

Our goal in this work is to combine Recurrent Neural

Networks with Artificial Neural Networks to improve the

deep learning based prime factorization algorithms.

In the next section we introduce the dataset

processing and the proposed novel algorithm. In section

4, we provide the results of our experiments. Finally, we

end with discussion on limitations and possible future

work.

III. METHODOLOGY

A. Dataset generation

The dataset needed to train the neural networks was

generated using the following algorithms: finding

semiprimes of the given number, converting a number

from decimal to binary representation and finding the

smallest prime factor of a number.

We studied four kinds of dataset, namely the dataset

of all semiprimes up to 1,000, 10,000, 100,000, and

1,000,000 respectively. The input values are semiprimes

converted into binary vectors and output values (labels)

are the smallest of the two prime divisors again converted

into binary vectors.

The first part of coding starts with setting the

upperbound, then all the numbers from 0 to the value of

upperbound are checked for the semiprime property. All

the semiprimes are collected and then are converted to

binary format and saved in a separate file. When training

the neural network, this data is split into train and test

parts.

Then comes the part when the neural network finishes

training. It provides bunch of digits between zero and

one. The smaller prime factors of the semiprimes are

converted to binary format and got ready beforehands. In

order to check how well the data is trained, the output

numbers are rounded first and then compared to the

expected values.

B. The proposed algorithm

In this section we introduce our proposed model

architecture in dealing with prime factorization.

The model should take as an input variable a

semiprime n which is the product of two primes p, q with

p < q and it needs to output the prime factor p. As

mentioned above, the networks are expected to work well

when these integers n and p are converted into binary

expansion. Each binary expansion is regarded as a vector

of dimension equal to the number of binary digits.

Clearly Artificial Neural Networks are effective in

dealing with vectors as is done in [6, 7]. One shortcoming

of ANNs is that the model regards each entry of the

vector as independent of the other entries to begin with.

However, clearly our binary expansion is an ordered

sequence and hence it can be regarded as meaningful

words. Thus, it makes sense to include in the model

Recurrent Neural Networks (RNN) as a common tool in

natural language processing. To this end, we use Long

Short-Term Memory (LSTM) networks which can learn

the dependencies between the entries of the input

variables. Detailed information about LSTM networks

can be found in the paper of A. Sherstinsky [8]. Our

proposed model summary is provided in Table 1 with

2,127,262 trainable parameters and 2,248 non-trainable

parameters.

TABLE 1. MODEL SUMMARY

Layer (type) Output Shape Param #

LSTM (None, 1, 128) 76288

Batch Normalization (None, 1, 128) 512

Dropout (None, 1, 128) 0

LSTM (None, 1, 256) 394240

Batch Normalization (None, 1, 256) 1024

Dropout (None, 1, 256) 0

LSTM (None, 512) 1574912

Batch Normalization (None, 512) 2048

Dropout (None, 512) 0

Dense (None, 128) 65664

Batch Normalization (None, 128) 512

Dropout (None, 128) 0

Dense (None, 100) 12900

Batch Normalization (None, 100) 400

Dropout (None, 100) 0

Dense (None, 10) 1010

 To be more precise, the proposed network topology

consists of three LSTM layers with output units 128, 256,

and 512 respectively. These RNN layers are then

followed by two hidden dense layers with 128 and 100

output units and ReLU activations. To avoid overfitting,

each layer is followed by batch normalization and

dropouts with probabilities 30% except the last one has

the probability of 40%. Finally, sigmoid activation

function is used in the output layer. The model is then

compiled with Binary Cross Entropy loss function

𝐻𝑝(𝑞) =

−
1

𝑁
∑ 𝑦𝑖𝑙𝑜𝑔(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − 𝑝(𝑦𝑖)),

𝑁

𝑖=1

RMSprop optimizer and Area Under the Curve (AUC)

accuracy metric.

RMSprop is an extension of the Adagrad method

where the learning rate is divided by an exponentially

decaying average of all squared gradients. This optimizer

uses plain momentum.

C. Accuracy metrics

 It is very common to evaluate the performance of a

binary classifier using the area under the receiver

operating characteristic (ROC) curve, AUC in short. The

performance is regarded better if AUC is closer to 1.

Thus, in our model training we use the AUC accuracy

metric available in Keras.

On the other hand, to check the performance of our

proposed model on both training and test sets after the

network weight trainings are over we use metrics βi’s

0 ≤ 𝑖 ≤ 4 similar to [7]. Here, β0 is called the complete

measure which shows how well the neural network has

learned by estimating the percentage of the results exactly

matching the desired output. In order to see the results

which were close to the label, the near measures βi’s are

used 1 ≤ 𝑖 ≤ 4. More specifically, βi indicates the

percentage of the data for which at most i bits are wrong.

These measures give some additional overview which is

found to be useful when assessing the model used on the

network.

IV. RESULTS OF THE EXPERIMENT

In this section we state the findings of the

experiments. As mentioned in the previous section, we

consider four different scenarios, namely, the

factorization problem for semiprimes of sizes less than

1,000, 10,000, 100,000, and 1,000,000 respectively and

report the accuracy metrics 𝛽𝑖 ′𝑠 for each case. For the

sake of comparison, we provide the results of Jansen and

Nakayama from [7].

Table 2 provides results for the semiprimes less than

1000 with 33.3% of the data allocated for validation. As

we see that the complete metric is 𝛽0 = 0.46 for our

model while it was 0.24 in [7].

TABLE 2. MODEL PERFORMANCES, N < 1,000

Model Type 𝛽
0

 𝛽
1
 𝛽

2
 𝛽

3
 𝛽

4

Proposed

RNN-ANN

Train

(66.6%)

67% 90% 98% 100% 100%

Test

(33.3%)

46% 63% 89% 100% 100%

ANN

(Jansen&

Nakayam

a)

Train

(66.6%)

61% 93% 100% 100% 100%

Test

(33.3%)

24% 48% 84% 100% NA

With the increase of the size of our semiprimes, the

model performance drop 10% with complete metric

giving 𝛽0 = 0.36 as given in Table 3. Surprisingly, the

performance in [7] is improved to 𝛽0 = 0.53 with the

increase of the semiprimes up to 10,000.

TABLE 3. MODEL PERFORMANCES N < 10,000

Model Type 𝛽
0

 𝛽
1
 𝛽

2
 𝛽

3
 𝛽

4

Proposed

RNN-ANN

Train

(66.6%)

60% 85% 97% 100% 100%

Test

(33.3%)

46% 61% 79% 95% 99%

ANN

(Jansen&

Nakayam

a)

Train

(66.6%)

64% 81% 93% 98% NA

Test

(33.3%)

53% 69% 83% 94% NA

As in [7] we provide two tables for the results with

semiprimes less than 100,000, see Table 4 and Table 5.

While in the first table, only 33.3% data were allocated

for the validation, it was 66.5% for the latter.

TABLE 4. MODEL PERFORMANCES, N < 100,000

Model Type 𝛽
0

 𝛽
1
 𝛽

2
 𝛽

3
 𝛽

4

Proposed

RNN-ANN

Train

(66.6%)

40% 62% 80% 92% 98%

Test

(33.3%)

33% 54% 75% 90% 97%

ANN

(Jansen&

Nakayam

a)

Train

(66.6%)

49% 63% 77% 89% 97%

Test

(33.3%)

45% 58% 72% 86% 95%

In terms of the performances on validation data, we

do not see too much difference while there is a readily

seen difference on train sets. In particular, with the

decrease of the train set to test set ratio there is overfitting

in our model.

TABLE 5. MODEL PERFORMANCE, N < 100,000

Model Type 𝛽
0

 𝛽
1
 𝛽

2
 𝛽

3
 𝛽

4

Proposed
RNN-ANN

Train
(33.3%)

65% 89% 98% 99% 100%

Test
(66.6%)

34% 50% 70% 87% 96%

ANN

(Jansen&

Nakayam

a)

Train
(33.3%)

51% 66% 81% 92% 98%

Test
(66.6%)

44% 57% 72% 86% 95%

Finally we turn our attention to the factorization of

semiprimes with sizes up to 1,000,000. To highlight the

importance of regularization steps we first train our

model without batch normalizations and dropouts. From

Fig. 1, we see overfitting. This in turn gives very high

performance in the train set while underperforming for

the test set as shown in Table 6.

Figure 1. AUC graph without regularizations

As the experimental results from Table1 and

Table 2 suggest, the test performance does not seem to

change much when the train to test ratio is increased. For

the semiprimes up to 1,000,000 we allocate only 10% of

the data for training and remaining 90% left for validation

see Table 6 and Table 7.

TABLE 6. MODEL PERFORMANCE WITHOUT REGULARIZATION, N <

1,000,000

Type 𝛽
0

 𝛽
1
 𝛽

2
 𝛽

3
 𝛽

4

Train

(10%)

98% 100% 100% 100% 100%

Test

(90%)

25% 36% 53% 72% 86%

In the next, we report the results when regularizations

are used as shown in Table 1 to overcome the overfitting.

Fig. 2 shows the progress of the AUC metric during the

training with 120 epochs and loss function graph is

provided in Fig. 3. We can clearly see the effect of

regularizations.

Figure 2. AUC graph with regularizations

Figure 3. Binary cross entropy loss in 120 epochs for the model

 From Table 7, we see that our model

outperforms [7] with the accuracy reaching to 𝛽0 = 0.36.

TABLE 7. MODEL PERFORMANCE WITH REGULARIZATION, N <

1,000,000

Model Type 𝛽
0

 𝛽
1
 𝛽

2
 𝛽

3
 𝛽

4

Proposed
RNN-ANN

Train
(10%)

38% 53% 70% 83% 93%

Test
(90%)

36% 50% 68% 82% 92%

ANN

(Jansen&

Nakayam

a)

Train
(10%)

33% 50% 68% 84% 93%

Test
(90%)

28% 42% 60% 77% 89%

V. DISCUSSION AND CONCLUSION

Earlier, B. Jansen and K. Nakayama examined the

ability of neural networks to learn factorizing semiprime

numbers using a binary approach. In this paper, we

address the same problem using binary approach but with

different settings and architecture. To be more specific,

artificial neural networks were trained together with

recurrent neural network LSTM. Analyzing the results

provided in the previous section, it is easy to see that the

RNN-ANN approach proposed in this paper shows

promising results with reaching out close to 100%

accuracy on train sets. While the model outperforms [6]

with complete metric accuracy of 36% compared to 28%

in [7] as shown in Table 7 for semiprimes up to 1,000,000

it is clearly far from being satisfactory. We note that there

are classical approaches [9] to the factorization problem

such as the Pollard Rho algorithm based on generating

numbers with many prime divisors. These algorithms can

handle the factorization of , say fifteen digit, numbers in a

short amount of time with almost 100% accuracy.

However, for large numbers, say numbers with one

hundred digits, these algorithms mostly fail unless one of

the prime divisors is small.

In any case, we can say that deep learning approaches

to prime factorization are still far from being satisfactory.

Maybe, combining the classical factorization techniques

to the machine learning methods can be beneficial and is

a subject of the future work.

REFERENCES

[1] Sh. Jiang, K. A. Britt, A. J. McCaskey, T. S. Humble, and S. Kais,

“Quantum annealing for prime factorization,” Scientific Reports 8,
2018.

[2] T. Kleinjung et al., “Factorization of a 768-bit RSA modulus,”

Advances in Cryptology – CRYPTO 2010, vol. 6223, 2010.
[3] M. Mumtaz and L. Ping, “Forty years of attacks on the RSA

cryptosystem: A brief survey,” Journal of Discrete Mathematical

Sciences and Cryptography, vol. 22, 2019.
[4] M. Mishra, U. Chaturvedi, and K. K. Shukla “Heuristic algorithm

based on molecules optimizing their geometry in a crystal to solve

the problem of integer factorization,” Soft Computing - A Fusion
of Foundations, Methodologies and Applications, vol. 20, July

2015.

[5] W. A. Borders et al., “Integer factorization using stochastic
magnetic tunnel junctions,” Nature, pp. 390-393, September 2019.

[6] G. C. Meletiou, D.K. Tasoulis, and M. N. Vrahatis, “A first study

of the neural network approach in the RSA cryptosystem,” Sixth
IASTED International Conference on Artificial Intelligence and

Soft Computing, pp. 483–488, July 2002.
[7] B. Jansen and K. Nakayama, “Neural networks following a binary

approach applied to the integer prime-factorization problem,”

Proceedings. IEEE International Joint Conference on Neural
Networks, vol. 4, 2005.

[8] A. Sherstinsky, “Fundamentals of Recurrent Neural Network

(RNN) and Long Short-Term Memory (LSTM) network,” Physica
D: Nonlinear Phenomena, vol. 404, March 2020.

[9] Kimsanova, G., Ismailova, R. and Sultanov, R., “Comparative

Analysis Of Integer Factorization Algorithms Using Cpu And
Gpu,” MANAS Journal of Engineering, 5(1), pp.52-63, 2017.

