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Abstract—Prime factor decomposition is a method that 

is used in number theory and in cryptography, as well. The 

security of the message depends on the difficulty of 

factorization. In other words, to hack the RSA system, 

factorization of N is needed, where N is a product of two 

prime (generally large) numbers. This paper analyzes the 

approaches which are already used to solve the problem, 

and proposes a new method which is expected to increase 

the efficiency of prime number factorization with the help of 

neural networks. The results in this paper can be used to 

develop and improve the security of cryptosystems. 
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I. INTRODUCTION  

Prime factorization, also known as prime number 

decomposition, is a technique, widely used in 

mathematics and other sciences as well. According to the 

fundamental theorem of arithmetic, every positive integer 

N (N > 1) can be factorized into a product of prime 

numbers. So far, there is no efficient method found to 

factorize large numbers, neglecting quantum 

computations [1]. An attempt was made in 2009, where 

researchers factorized 232-digit numbers which took 

hundreds of machines and a couple of years to solve the 

problem [2]. This leads to the assumption that factoring 

bigger numbers might take much longer. 

Cryptography is an area of study that considers 

various techniques for secure communication. One of the 

well-known public key cryptosystems is the Rivest, 

Shamir and Adleman (RSA) cryptosystem, which is 

based on semiprime factorization. A natural number N is 

said to be semiprime if it is the product of two distinct 

prime numbers. RSA happens to be one of the first public 

key cryptosystems, which makes the encryption key 

public, but keeps the decryption key private. This type of 

system is also called a non-symmetric system, due to the 

fact that the keys required for encryption and decryption 

are different. For secure communication with RSA, the 

receiver generates two large primes numbers p and q, 

usually taken to be over 400 digits each. These numbers 

are kept secret, while their product N=pq is made 

publicly available. So, anyone wishing to send a secure 

message to the receiver makes use of N to encrypt the 

message and it can only be decrypted if two primes p and 

q are known. In particular, the receiver can read the 

message. The security of a message encrypted by the 

RSA cryptosystem directly depends on the difficulty of 

factorizing the given large (in practice is taken to be of 

500 digit) natural number to its primes. The paper of M. 

Mumtaz and L. Ping describes recent attacks on the RSA 

and gives overview on the challenges [3].   

The fundamental of algorithms is based on the 

factorization problem; therefore, the method plays a 

significant role in this area. Solving prime factorization 

problems will make a contribution not only to 

information security, but also will give benefit in other 

sciences. For instance, the interest in this problem is high 

in chemistry. Recently, researchers modelled an 

algorithm on optimization of the surface energy potential 

of molecules in a crystal based on computational 

chemistry. Even though the cases were not realistic, the 

results show that there is a potential of molecular 

geometry optimization algorithm in the problem of prime 

factorization [4]. One more related paper was published 

recently in 2019. It is about factorizing values by 

stochastic magnetic tunnel junctions. The results show 

integer factorization up to 945 using probabilistic 

computer utilizing probabilistic bits that was 

implemented with stochastic nanomagnetic devices in a 

neural-network-inspired electrical circuit operating at 

room temperature [5]. 

 

II. LITERATURE REVIEW 

The function N = p×q is known as a one-way 

function. Evaluating N from the given p and q is not hard, 

but the inverse of it, that is getting p and q from the given 

N is much harder. In addition to that, factorizing N is 

accepted to be as hard as finding out the decryption key 

in RSA [6]. The first research on factorizing N using 

neural networks was made in 2002 by G.C. Meletiou et 

al. The training methods that were used are Standard 

Back Propagation, Back Propagation with Variable 

Stepsize, the Resilient Back Propagation and the On-Line 

Adaptive Back Propagation. They conclude that the 

training methods do not make a big difference for the 

results. The actual important factors that affect the 

efficiency are the approximation methods and network 

architecture [6].  



Another research that made a contribution on solving 

this problem was made in 2005 [7]. A binary approach 

together with neural networks was used in this paper. The 

results showed that this method was able to improve the 

performance of factorization; so, the efficiency of this 

problem is a subject to change.  The different 

approximation was used, that is mapping N→p, while in 

the first paper it was N→φ(N). Both of these mappings 

can be used for approximation, but the recent one 

appeared to be more efficient because of its output range 

and decrease in time needed for validity. One more 

difference was in the data structure. In that paper, a 

different structure from decimal form was used, which is 

a binary form. The assumption that was made to do that 

was that the binary approach will give a more stable 

network [7]. The neural network part of these papers is 

using the feed-forward network, where there is one layer 

for input, one for the output, and others between them are 

hidden layers. According to the remarks, using one or two 

hidden layers gives better results [6, 7]. The methods 

which were used for training the network include the 

Resilient Back Propagation, Standard Back Propagation, 

Back Propagation with Variable Stepsize and On-Line 

Adaptive Back Propagation. Although there was progress 

in factorizing not so large numbers, decomposition of 

larger integers into primes is still far from being efficient.  

Our goal in this work is to combine Recurrent Neural 

Networks with Artificial Neural Networks to improve the 

deep learning based prime factorization algorithms. 

In the next section we introduce the dataset 

processing and the proposed novel algorithm. In section 

4, we provide the results of our experiments. Finally, we 

end with discussion on limitations and possible future 

work. 

 

III. METHODOLOGY 

A. Dataset generation 

The dataset needed to train the neural networks was 

generated using the following algorithms: finding 

semiprimes of the given number, converting a number 

from decimal to binary representation and finding the 

smallest prime factor of a number.  

We studied four kinds of dataset, namely the dataset 

of all semiprimes up to 1,000, 10,000, 100,000, and 

1,000,000 respectively. The input values are semiprimes 

converted into binary vectors and output values (labels) 

are the smallest of the two prime divisors again converted 

into binary vectors.  

The first part of coding starts with setting the 

upperbound, then all the numbers from 0 to the value of 

upperbound are checked for the semiprime property. All 

the semiprimes are collected and then are converted to 

binary format and saved in a separate file. When training 

the neural network, this data is split into train and test 

parts.  

Then comes the part when the neural network finishes 

training. It provides bunch of digits between zero and 

one. The smaller prime factors of the semiprimes are 

converted to binary format and got ready beforehands. In 

order to check how well the data is trained, the output 

numbers are rounded first and then compared to the 

expected values. 

B. The proposed algorithm 

In this section we introduce our proposed model 

architecture in dealing with prime factorization.  

The model should take as an input variable a 

semiprime n which is the product of two primes p, q with 

p < q and it needs to output the prime factor p. As 

mentioned above, the networks are expected to work well 

when these integers n and p are converted into binary 

expansion. Each binary expansion is regarded as a vector 

of dimension equal to the number of binary digits. 

Clearly Artificial Neural Networks are effective in 

dealing with vectors as is done in [6, 7]. One shortcoming 

of ANNs is that the model regards each entry of the 

vector as independent of the other entries to begin with. 

However, clearly our binary expansion is an ordered 

sequence and hence it can be regarded as meaningful 

words. Thus, it makes sense to include in the model 

Recurrent Neural Networks (RNN) as a common tool in 

natural language processing. To this end, we use Long 

Short-Term Memory (LSTM) networks which can learn 

the dependencies between the entries of the input 

variables. Detailed information about LSTM networks 

can be found in the paper of A. Sherstinsky [8]. Our 

proposed model summary is provided in Table 1 with 

2,127,262 trainable parameters and 2,248 non-trainable 

parameters. 

TABLE 1. MODEL SUMMARY 
 

Layer (type) Output Shape Param # 

LSTM (None, 1, 128)  76288 

Batch Normalization (None, 1, 128) 512 

Dropout (None, 1, 128) 0 

LSTM (None, 1, 256)  394240 

Batch Normalization (None, 1, 256)  1024 

Dropout (None, 1, 256) 0 

LSTM (None, 512)   1574912 

Batch Normalization (None, 512)   2048 

Dropout (None, 512)   0 



Dense (None, 128) 65664 

Batch Normalization (None, 128)  512 

Dropout (None, 128)  0 

Dense (None, 100)  12900 

Batch Normalization (None, 100)  400 

Dropout (None, 100)  0 

Dense (None, 10) 1010 

  

 To be more precise, the proposed network topology 

consists of three LSTM layers with output units 128, 256, 

and 512 respectively. These RNN layers are then 

followed by two hidden dense layers with 128 and 100 

output units and ReLU activations. To avoid overfitting, 

each layer is followed by batch normalization and 

dropouts with probabilities 30% except the last one has 

the probability of 40%. Finally, sigmoid activation 

function is used in the output layer. The model is then 

compiled with Binary Cross Entropy loss function 

𝐻𝑝(𝑞) = 

−
1

𝑁
∑ 𝑦𝑖𝑙𝑜𝑔(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − 𝑝(𝑦𝑖)),

𝑁

𝑖=1

 

RMSprop optimizer and Area Under the Curve (AUC) 

accuracy metric. 

RMSprop is an extension of the Adagrad method 

where the learning rate is divided by an exponentially 

decaying average of all squared gradients. This optimizer 

uses plain momentum. 

C. Accuracy metrics 

 It is very common to evaluate the performance of a 

binary classifier using the area under the receiver 

operating characteristic (ROC) curve, AUC in short. The 

performance is regarded better if AUC is closer to 1. 

Thus, in our model training we use the AUC accuracy 

metric available in Keras. 

On the other hand, to check the performance of our 

proposed model on both training and test sets after the 

network weight trainings are over we use metrics βi’s 

0 ≤  𝑖 ≤  4 similar to [7]. Here, β0 is called the complete 

measure which shows how well the neural network has 

learned by estimating the percentage of the results exactly 

matching the desired output. In order to see the results 

which were close to the label, the near measures βi’s are 

used 1 ≤  𝑖 ≤  4. More specifically, βi indicates the 

percentage of the data for which at most i bits are wrong.  

These measures give some additional overview which is 

found to be useful when assessing the model used on the 

network.  

IV. RESULTS OF THE EXPERIMENT 

In this section we state the findings of the 

experiments. As mentioned in the previous section, we 

consider four different scenarios, namely, the 

factorization problem for semiprimes of sizes less than 

1,000, 10,000, 100,000, and 1,000,000 respectively and 

report the accuracy metrics 𝛽𝑖 ′𝑠 for each case. For the 

sake of comparison, we provide the results of Jansen and 

Nakayama from [7].  

Table 2 provides results for the semiprimes less than 

1000 with 33.3% of the data allocated for validation. As 

we see that the complete metric is 𝛽0 = 0.46 for our 

model while it was 0.24 in [7].  

 

 

TABLE 2. MODEL PERFORMANCES, N < 1,000 

Model Type 𝛽
0

 𝛽
1
 𝛽

2
 𝛽

3
 𝛽

4
 

Proposed 

RNN-ANN 

Train 

(66.6%) 

67% 90% 98% 100% 100% 

Test 

(33.3%) 

46% 63% 89% 100% 100% 

ANN 

(Jansen& 

Nakayam

a) 

Train 

(66.6%) 

61% 93% 100% 100% 100% 

Test 

(33.3%) 

24% 48% 84% 100% NA 

 

With the increase of the size of our semiprimes, the 

model performance drop 10% with complete metric 

giving 𝛽0 = 0.36 as given in Table 3. Surprisingly, the 

performance in [7] is improved to 𝛽0 = 0.53 with the 

increase of the semiprimes up to 10,000.  

TABLE 3. MODEL PERFORMANCES N < 10,000 

Model Type 𝛽
0

 𝛽
1
 𝛽

2
 𝛽

3
 𝛽

4
 

Proposed 

RNN-ANN 

Train 

(66.6%) 

60% 85% 97% 100% 100% 

Test 

(33.3%) 

46% 61% 79% 95% 99% 

ANN 

(Jansen& 

Nakayam

a) 

Train 

(66.6%) 

64% 81% 93% 98% NA 

Test 

(33.3%) 

53% 69% 83% 94% NA 

 

As in [7] we provide two tables for the results with 

semiprimes less than 100,000, see Table 4 and Table 5. 

While in the first table, only 33.3% data were allocated 

for the validation, it was 66.5% for the latter. 

TABLE 4. MODEL PERFORMANCES, N < 100,000 



Model Type 𝛽
0

 𝛽
1
 𝛽

2
 𝛽

3
 𝛽

4
 

Proposed 

RNN-ANN 

Train 

(66.6%) 

40% 62% 80% 92% 98% 

Test 

(33.3%) 

33% 54% 75% 90% 97% 

ANN 

(Jansen& 

Nakayam

a) 

Train 

(66.6%) 

49% 63% 77% 89% 97% 

Test 

(33.3%) 

45% 58% 72% 86% 95% 

 

In terms of the performances on validation data, we 

do not see too much difference while there is a readily 

seen difference on train sets. In particular, with the 

decrease of the train set to test set ratio there is overfitting 

in our model. 

TABLE 5. MODEL PERFORMANCE,  N < 100,000 

Model Type 𝛽
0

 𝛽
1
 𝛽

2
 𝛽

3
 𝛽

4
 

Proposed 
RNN-ANN 

Train 
(33.3%) 

65% 89% 98% 99% 100% 

Test 
(66.6%) 

34% 50% 70% 87% 96% 

ANN 

(Jansen& 

Nakayam

a) 

Train 
(33.3%) 

51% 66% 81% 92% 98% 

Test 
(66.6%) 

44% 57% 72% 86% 95% 

 

Finally we turn our attention to the factorization of 

semiprimes with sizes up to 1,000,000. To highlight the 

importance of regularization steps we first train our 

model without batch normalizations and dropouts.  From 

Fig. 1, we see overfitting. This in turn gives very high 

performance in the train set while underperforming for 

the test set as shown in Table 6. 

 

Figure 1.  AUC graph without regularizations 

As the experimental results from Table1 and 

Table 2 suggest, the test performance does not seem to 

change much when the train to test ratio is increased. For 

the semiprimes up to 1,000,000 we allocate only 10% of 

the data for training and remaining 90% left for validation 

see Table 6 and Table 7. 

TABLE 6. MODEL PERFORMANCE WITHOUT REGULARIZATION, N < 

1,000,000 

Type 𝛽
0

 𝛽
1
 𝛽

2
 𝛽

3
 𝛽

4
 

Train 

(10%) 

98% 100% 100% 100% 100% 

Test 

(90%) 

25% 36% 53% 72% 86% 

 

 

In the next, we report the results when regularizations 

are used as shown in Table 1 to overcome the overfitting. 

Fig. 2 shows the progress of the AUC metric during the 

training with 120 epochs and loss function graph is 

provided in Fig. 3. We can clearly see the effect of 

regularizations. 

 

 

Figure 2.  AUC graph with  regularizations 

 

 

Figure 3.  Binary cross entropy loss in 120 epochs for the model 



 

 From Table 7, we see that our model 

outperforms [7] with the accuracy reaching to 𝛽0 = 0.36. 

TABLE 7. MODEL PERFORMANCE WITH  REGULARIZATION, N < 

1,000,000 

Model Type 𝛽
0

 𝛽
1
 𝛽

2
 𝛽

3
 𝛽

4
 

Proposed 
RNN-ANN 

Train 
(10%) 

38% 53% 70% 83% 93% 

Test 
(90%) 

36% 50% 68% 82% 92% 

ANN 

(Jansen& 

Nakayam

a) 

Train 
(10%) 

33% 50% 68% 84% 93% 

Test 
(90%) 

28% 42% 60% 77% 89% 

 

 

V. DISCUSSION AND CONCLUSION 

Earlier, B. Jansen and K. Nakayama examined the 

ability of neural networks to learn factorizing semiprime 

numbers using a binary approach. In this paper, we 

address the same problem using binary approach but with 

different settings and architecture. To be more specific, 

artificial neural networks were trained together with 

recurrent neural network LSTM. Analyzing the results 

provided in the previous section, it is easy to see that the 

RNN-ANN approach proposed in this paper shows 

promising results with reaching out close to 100% 

accuracy on train sets. While the model outperforms [6] 

with complete metric accuracy of 36% compared to 28% 

in [7] as shown in Table 7 for semiprimes up to 1,000,000 

it is clearly far from being satisfactory. We note that there 

are classical approaches [9] to the factorization problem 

such as the Pollard Rho algorithm based on generating 

numbers with many prime divisors. These algorithms can 

handle the factorization of , say fifteen digit, numbers in a 

short amount of time with almost 100% accuracy. 

However, for large numbers, say numbers with one 

hundred digits, these algorithms mostly fail unless one of 

the prime divisors is small.  

In any case, we can say that deep learning approaches 

to prime factorization are still far from being satisfactory. 

Maybe, combining the classical factorization techniques 

to the machine learning methods can be beneficial and is 

a subject of the future work.  
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