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Abstract. In response to the increasing demand for enhanced industrial
safety and efficiency, this research delves into the domain of sound anomaly
detection within industrial environments, leveraging the power of deep learning.
Focused on addressing the limitations of traditional methods, the study
investigates various deep learning architectures, including convolutional neural
networks (CNNs), recurrent neural networks (RNNSs), and hybrid models, to
discern their efficacy in detecting abnormal sounds. The survey rigorously
evaluates datasets, preprocessing techniques, and benchmarks, providing a
comprehensive overview of the state-of-the-art models and their applications
across diverse industrial sectors.

The paper scrutinizes performance evaluation metrics, drawing
comparisons between deep learning and traditional methods in sound anomaly
detection. Real-world applications and case studies underscore the practical
significance of these advancements. While acknowledging achievements, the
research identifies challenges and proposes future directions, emphasizing the
need for innovative solutions to enhance the robustness and real-world
applicability of deep learning-based sound anomaly detection in industrial
settings.

This research not only contributes valuable insights into the intersection
of deep learning and industrial sound analysis but also serves as a pivotal guide
for researchers and practitioners seeking to navigate the complexities of
deploying effective sound anomaly detection systems.

Keywords: Sound Anomaly Detection, Deep Learning, Convolutional
Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Hybrid Models,
Abnormal Sound Detection.

I. Introduction

In the rapidly evolving landscape of industrial environments,
characterized by increasing automation and technological advancements, the
importance of effective anomaly detection mechanisms has never been more
pronounced. As manufacturing processes become more automated, the timely
detection of anomalies or defects during production becomes crucial for
maintaining quality assurance and operational efficiency [1]. Traditional signal
processing techniques for acoustic condition monitoring have traditionally relied
on domain expertise to manually craft features [2]. However, in the realm of
complex industrial sounds, this approach can be limiting.
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Industrial environments encompass a dynamic and intricate soundscape,
ranging from routine machinery operations to potential malfunctions.
Identifying abnormal sounds within this complexity is essential for proactive
maintenance, minimizing downtime, and ensuring the safety of workers and
equipment. Conventional signal processing techniques, reliant on manually
crafted features, encounter challenges in capturing the nuanced characteristics of
complex industrial sounds.

In response to these challenges, deep learning presents an innovative and
end-to-end approach to automatically learn representations directly from raw
audio waveforms or spectrograms [3,4]. This capability seamlessly aligns with
the intricacies of industrial sound analysis, offering a promising avenue for
improving the accuracy and robustness of sound anomaly detection systems.

This research systematically investigates various deep learning
architectures, including convolutional neural networks (CNNSs), recurrent neural
networks (RNNSs), and hybrid models, to assess their suitability for industrial
sound analysis. By evaluating datasets, preprocessing techniques, and
benchmarking methodologies, | aim to provide a comprehensive understanding
of the state-of-the-art models and their applications across diverse industrial
sectors.

As | delve into the intricacies of deep learning for sound anomaly
detection, this study also addresses the need for rigorous performance evaluation
metrics. By comparing the effectiveness of deep learning with traditional
methods, | aim to highlight the advancements made and identify areas for
improvement. Real-world applications and case studies underscore the practical
significance of these advancements, emphasizing their potential impact on
industrial safety and efficiency.

While recognizing the achievements, challenges are inherent, including
issues related to data sparsity, scalability, and ensuring fairness in algorithmic
outcomes. The research not only identifies these challenges but also proposes
innovative solutions and future research directions to enhance the real-world
applicability of deep learning-based sound anomaly detection in industrial
settings. In doing so, this study aspires to contribute valuable insights and serve
as a guide for researchers and practitioners navigating the complexities of
deploying effective sound anomaly detection systems in automated
manufacturing processes.

The remaining sections of the paper are structured as follows: Section 2
is about Methodology. Section 3 delves into Deep Learning Approaches.
Meanwhile, sections 4 delve into the Limitations of Popular Deep Learning
Algorithms in sound anomaly detection. In Section 5, | explore an analysis of
Key Studies, and lastly, Section 6 provides a future work and discussion on the
conclusion.

I1. Methodology
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This research undertakes a systematic exploration of deep learning
applications in detecting anomalies within industrial soundscapes. In April 2022,
a comprehensive literature search was conducted using keywords such as
industrial sounds, machinery fault detection, deep learning, and anomaly
detection across major databases, including IEEE Xplore, Springer,
ScienceDirect, and ACM Digital Library. The inclusion criteria encompassed
papers published between 2017-2022 that specifically applied deep learning to
industrial sound datasets.

Data collection involves extracting key information from the identified
papers, including model architecture, dataset details, evaluation metrics, and key
findings. This comprehensive analysis encompasses various deep learning
models, feature extraction techniques, and performance comparisons to establish
a nuanced understanding of the current state-of-the-art in sound anomaly
detection within industrial environments.

Building upon this, a literature review extends beyond the immediate
scope of industrial sounds, incorporating insights from works applying deep
learning in diverse contexts. This broader perspective allows for a comparative
analysis and a more comprehensive understanding of the methodologies and
challenges inherent in utilizing deep learning for anomaly detection, specifically
within industrial soundscapes.

The research evaluates the efficacy of different deep learning
architectures, such as convolutional neural networks (CNNSs), recurrent neural
networks (RNNs), and hybrid models, in capturing the intricacies of industrial
sounds. Feature extraction techniques, performance metrics, and limitations are
rigorously examined. Comparative analyses with traditional signal processing
methods are conducted to highlight advancements and identify areas for
improvement.

The methodology considers ethical considerations, emphasizing the
importance of fairness and privacy in algorithmic outcomes. Challenges related
to data sparsity, scalability, and potential biases in the industrial context are
addressed.

Meticulous documentation is maintained throughout the research
process, including details on the literature search, dataset selection criteria, and
the rationale behind model choices. This documentation ensures transparency
and facilitates reproducibility, providing a clear roadmap for researchers and
practitioners interested in deploying effective sound anomaly detection systems
in automated manufacturing processes.

I11. Deep Learning approaches

Within the realm of sound anomaly detection in industrial environments,
various deep learning architectures have been explored to capture the intricacies
of complex acoustic patterns. These approaches offer end-to-end solutions,
enabling automatic learning of representations directly from raw audio data
[3,4]. The primary deep learning models under consideration include
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Convolutional Neural Networks (CNNSs), Recurrent Neural Networks (RNNSs),
and Hybrid Models, each tailored to address specific challenges in industrial
sound analysis.

[11.1 Convolutional Neural Networks (CNNs)

CNNs have proven to be effective in extracting hierarchical features from
spectrograms and raw audio waveforms. Particularly well-suited for image and
pattern recognition, CNNs employ convolutional layers to automatically learn
spatial hierarchies within the input data. In the context of industrial sounds,
CNNs excel in capturing frequency patterns and spatial dependencies, making
them adept at discerning anomalies within complex acoustic environments [6].
Their ability to automatically learn relevant features contributes to their
effectiveness in sound anomaly detection tasks.
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Figure 1. Convolutional Neural Networks (CNNs)

I11.2 Recurrent Neural Networks (RNNs)

RNNs are well-suited for capturing temporal dependencies within
sequential data, making them applicable to the time-sensitive nature of industrial
sounds. The recurrent connections in RNNs allow the model to retain memory
of past inputs, enabling the detection of patterns that unfold over time. In
industrial settings, where anomalies may manifest as temporal deviations in
sound patterns, RNNs offer valuable capabilities. The sequential nature of RNNs
makes them particularly useful in scenarios where the context of past
observations is crucial for accurate anomaly detection.
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Figure 2. Recurrent Neural Networks (RNNs)

I11.3 Hybrid-based approach

Recognizing the complementary strengths of both CNNs and RNNSs,
hybrid models integrate elements of both architectures. By combining the spatial
feature extraction capabilities of CNNs with the temporal understanding
provided by RNNSs, hybrid models aim to capture a broader spectrum of
information from industrial soundscapes [8]. This combination enhances the
models' ability to discern anomalies that manifest across both frequency and time
domains. Hybrid models leverage the power of CNNs to automatically learn
hierarchical representations while utilizing RNNs to capture temporal
dependencies, resulting in more robust and context-aware sound anomaly
detection.

In the pursuit of effective sound anomaly detection in industrial
environments, the selection of the appropriate deep learning approach depends
on the specific characteristics of the dataset and the nature of the anomalies.
Whether utilizing the spatial understanding of CNNSs, the temporal sensitivity of
RNNs, or the combined capabilities of hybrid models, these deep learning
architectures contribute to advancing the state-of-the-art in industrial sound
analysis. Their application not only enhances accuracy but also enables the
automated extraction of meaningful features crucial for real-world anomaly
detection scenarios.

IV. Limitations of Deep Learning Algorithms

Despite their considerable capabilities, deep learning algorithms
employed for sound anomaly detection in industrial settings face inherent
limitations that warrant careful consideration.

Deep learning models often require extensive labeled data for effective
training. In industrial sound anomaly detection, obtaining large and diverse
datasets representative of various anomalies can be challenging. Limited data
may hinder the model's ability to generalize well, impacting its overall
performance in detecting nuanced anomalies.

The computational demands of complex deep learning architectures,
such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs), can be substantial. Scaling these models to handle the vast amounts of
data generated in industrial environments may pose challenges in terms of
computational resources and efficiency.

Deep learning models are often considered "black-box™ models, making
it challenging to interpret their decision-making processes. In industrial sound
anomaly detection, where understanding the reasons behind anomaly predictions
is crucial for troubleshooting, the lack of model interpretability can be a
significant limitation.

Deep learning models may struggle when encountering new or rare types
of anomalies not adequately represented in the training data. The "cold-start"
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problem can limit the model's effectiveness in detecting emerging anomalies,
requiring continual adaptation to evolving industrial soundscapes.

Deep learning models involve tuning various hyperparameters, and their
performance can be sensitive to these choices. Identifying the optimal set of
hyperparameters for a specific industrial sound anomaly detection task may
require extensive experimentation, and suboptimal choices can impact the
model's overall effectiveness.

The success of deep learning algorithms heavily relies on the quality and
representativeness of the training data. Noisy or biased data may lead to
inaccuracies, particularly when dealing with subtle anomalies in industrial
soundscapes.

Understanding these limitations is crucial for researchers and
practitioners in industrial sound anomaly detection, guiding efforts to address
challenges and refine the application of deep learning algorithms in real-world
scenarios. Ongoing research and innovation aim to overcome these constraints,
contributing to the development of more robust and effective sound anomaly
detection systems.

V. Key Studies Analysis

In the course of my comparative examination of these model types, it
becomes evident that each model presents unique merits and challenges. A
comprehensive breakdown of these models, emphasizing their fundamental
characteristics, is delineated in Table 1.

Table 1. Strengths and Weaknesses of Deep Learning algorithms

Key Points CNN RNN

Strengths

Effective at capturing intricate + +
frequency patterns

Excellent at capturing temporal + +
dependencies

Quick adaptation to new datasets +

Improved efficiency in handling +
sequential data
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Weaknesses

Limited in handling temporal + +
dependencies

Less efficient in extracting + +
hierarchical frequency features

Dependency on source domain for +
pre-training
Increased computational +
complexity
May struggle with capturing long- +

term dependencies

In the context of my comparative analysis, the distinct attributes of
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) come to the forefront. Each model type exhibits particular strengths and
weaknesses, contributing to their efficacy or limitations in the realm of industrial
sound anomaly detection.

CNNs demonstrate efficacy in capturing intricate frequency patterns
within industrial soundscapes. Their adaptability to new datasets facilitates swift
integration, a quality particularly advantageous for scenarios with evolving
sound characteristics. However, CNNs exhibit limitations in handling temporal
dependencies, which may constrain their ability to discern nuanced temporal
variations in the data. Additionally, their reliance on pre-training introduces a
dependency on the source domain, and the increased computational complexity
poses a notable challenge.

In contrast, RNNs excel in capturing temporal dependencies, making
them particularly suitable for handling sequential data inherent in industrial
sound patterns. Their efficiency in handling temporal sequences enhances their
overall performance. Nevertheless, RNNs may face challenges in efficiently
extracting hierarchical frequency features, impacting their ability to capture
intricate frequency patterns [8-10]. Furthermore, there may be limitations in
capturing long-term dependencies, which can affect their effectiveness in
scenarios requiring a prolonged understanding of sound dynamics.

The supplementary material, presented in the Appendix, furnishes an
exhaustive examination of seminal research papers within the domain of sound
anomaly detection in industrial environments. This compilation offers in-depth
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insights into the datasets utilized, methodologies applied, and performance
metrics employed for the evaluation of sound anomaly detection algorithms.
Encompassing diverse applications within industrial soundscapes, these studies
span from manufacturing processes to machinery fault detection. The provided
table serves as an invaluable compendium for researchers, practitioners, and
enthusiasts in the field, elucidating the wide-ranging and profound nature of
sound anomaly detection research.

VI. Future work

In the realm of sound anomaly detection within industrial environments,
the trajectory of future research unfolds across various dimensions, offering
opportunities to refine and extend current methodologies.

One critical aspect involves the imperative to enhance the interpretability
of deep learning models. The inherent "black-box™ nature of these models poses
a significant challenge, necessitating the development of methodologies that
provide a more transparent understanding of their decision-making processes.

Another avenue for exploration lies in the integration of multimodal data.
Combining audio with visual or sensor data presents an interdisciplinary
approach that holds promise for uncovering new dimensions in anomaly
detection. This integration could contribute to an overall enhancement of the
robustness of sound anomaly detection systems.

Transfer learning techniques offer a compelling direction for future
research. Exploring the adaptability of pre-trained models from one industrial
domain to another holds potential for mitigating challenges related to data
scarcity and improving the performance of anomaly detection across diverse
industrial settings.

As industrial environments continue to scale, addressing the associated
scalability challenges of deep learning models becomes crucial. Future research
efforts should focus on developing scalable architectures and efficient training
methodologies, enabling the seamless deployment of sound anomaly detection
systems in large-scale industrial contexts.

Real-time anomaly detection capabilities emerge as a critical area of
investigation. The ability to intervene promptly in industrial processes requires
the development of methodologies that reduce inference time, ensuring the
practical deployment of sound anomaly detection models in real-time scenarios.

Incorporating human-in-the-loop systems for anomaly validation and
feedback stands as a pivotal aspect for future exploration. Developing
frameworks that seamlessly integrate human expertise with automated detection
models could lead to more robust and adaptive anomaly detection solutions.

Ethical considerations and bias mitigation form an integral part of the
future research landscape. Strategies to identify and address biases in training
data and model outputs are essential, ensuring fairness and equity in anomaly
detection across diverse industrial contexts.
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Collectively, these diverse avenues for future research form a
comprehensive roadmap for advancing sound anomaly detection within
industrial environments. The aim is to refine the effectiveness, reliability, and
ethical considerations of deep learning-based systems, ultimately contributing to
their practical application in industrial settings.

X1. Conclusion

In the dynamic realm of sound anomaly detection within industrial
settings, this survey paper undertakes a thorough exploration of the diverse
methodologies, challenges, and future trajectories that shape this emerging field.

Starting with the classification of sound anomaly detection models based
on their intended applications, ranging from monitoring manufacturing
processes to detecting faults in machinery, the review delves into the intricate
methodologies, algorithms, and data sources that constitute the foundation of
these systems. It emphasizes the strengths and limitations inherent in these
approaches, with a focal point on the growing importance of personalization,
driven by the adoption of deep learning and advanced techniques, alongside
ethical considerations and user privacy concerns.

The examination of commonly used evaluation metrics to assess the
performance of sound anomaly detection systems reveals the challenges
associated with effectively gauging their impact. Articulating hurdles such as
data sparsity, scalability, and fairness, the survey underscores the obstacles that
require concerted efforts for resolution.

Real-world case studies and success stories are presented to exemplify
the practical implications of sound anomaly detection systems, offering insights
into best practices and lessons learned. Looking ahead, emerging trends and the
integration of cutting-edge technologies, such as artificial intelligence and signal
processing, are explored as potential solutions to the challenges facing these
systems.

At this juncture, the field of sound anomaly detection in industrial
environments stands poised at the convergence of technological advancements
and the intricate task of ensuring the quality and safety of production processes.
This survey paper illuminates a path from existing methodologies to future
possibilities, addressing the multifaceted aspects of this field.

Moving forward, it is evident that sound anomaly detection systems will
play a pivotal role in maintaining the quality and safety of automated
manufacturing processes. The integration of deep learning and other advanced
techniques holds the promise of delivering more accurate and robust anomaly
detection, ultimately enhancing the reliability of industrial operations. However,
the imperative to strike a balance between innovation and ethical considerations
remains crucial, underscoring the need to prioritize privacy, fairness, and
transparency in the development and deployment of these systems.

The challenges dissected in this survey are not insurmountable obstacles
but rather opportunities for growth and refinement. The collaborative efforts of
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researchers, practitioners, and stakeholders will be paramount in addressing
these challenges and realizing the full potential of sound anomaly detection
systems in industrial settings.

In conclusion, this survey paper serves as a guiding beacon for the field,
furnishing a holistic understanding of the methodologies and challenges that
define sound anomaly detection in industrial environments. By providing
insights into the past, present, and future of this domain, the aim is to empower
industries with the knowledge needed to deploy effective anomaly detection
systems, ensuring a harmonious integration of human expertise and
technological advancements in automated manufacturing processes.
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Rate (TNR)
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o performance
G. etal. pediatric ~ asthma . Model performance
) through active
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learning techniques

Concrete specimens

Evaluation of the
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State-of-the-art

[30] Yucong Z. | MIMII, DCASE | Outlier  exposure- | single-model systems
et.al. 2020 based methods and top-ranked multi-
system ensembles.
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HAKTbBI YAKBITTAFBI IbIBBICTBIK AHOMAJIMAHbBI TEPEH
OKBITYMEH OHAIPICTIK OPTAHBI AHBIKTAY

AnaaTna. OHEPKOCINTIK KAyilCi3AiK MeH TUIMAUIKTI apTThIpyFa
CYpPaHBICTBIH apTyblHa kayal peTiHae Oyl 3epTTey TepeH OKBITY
MYMKIHJIKTEpiH TMaiiajJjaHa OTBIPBIN, OHEPKACINTIK OPTaJarbl JIbIOBICTHIK
ayBITKYJIap/bl aHBIKTAY CaJachlH 3epTTeiai. JlocTypii omicTep iy meKTeyaepin
JKOIOFa OaFbITTANIFaH 3ePTTEY SPTYPIIi TEPEH OKBITY apXUTEKTYpaIapbiH, COHBIH
IIIHA€ KOHBOJIIOUMSIIBIK HEWpOHABIK kenuiepal (Cnn), KaliTanaHaTbiH
HeHpoHIBIK skenuiepai (Rnn) skoHe oMapabplH KalbIITaH ThIC IBIOBICTap.IbI
aHbIKTayJaFbl TUIMJUIITIH aHBIKTAy YIIIH TMOPHUATI MOJENbIepAl 3epTTeii.
CayanHama JepeKkTep S>KUBIHTBIFbIH, aJJIbIH ana eHJeY oJICTepiH >KoHE
STAJIOHJApAbl MYKHUAT Oaranaiinpl, OyJl 3aMaHayM YiAriiepre >KoHe oJjapiblH
OpTYpJII OHEPKACINTIK CEKTOpJIap/arbl KojJaHOajdapblHA >KaH-)KAaKThl LIOTY
JKacaapbl.

Makanaga TepeH OKBITY MEH ABIOBICTHIK ayBITKYJap/bl aHBIKTAYIbIH
JOCTYPIIl OMICTEPIH CANBICTBIPY apKBUIBI OHIMIUIIKTI Oaranay KepceTKimTepi
MYKHSIT 3epTTesneai. HakTel onemMeri KochIMITaap MeH KaFIaiiIbIK 3epTTeyiep
OCBI JKETICTIKTEP/IIH MPaKTUKAIBIK MaHbI3bUIBIFBIH KepceTeai. JKeTricTikrepai
MOWBIHJAM OTBIPHIN, 3€pTTEY MpoliIeManapabl aHBIKTaWIbl >KOHE OoJalax
OarpITTapAbl YCBHIHA/BI, OYJ1 OHEPKOCINTIK KaFjalinapia TEepeH OKBITyFa
HETI3/IeIreH JABIOBICTHIK aybITKYJIapAbl aHBIKTAYJBIH CEHIMAUIIIT MEH HaKThI
oneMJe KOJNAAHBUIYBIH apTThIpy YINIH HWHHOBALMSJIBIK  IIEMIIMJIEPIiH
KQXKETTUIITH KepCceTeIl.

byn 3eprTey TepeH OKBITY MEH OHEPKOCINTIK JBIOBICTHI TalAayIbIH
KHUBLIBICHI TYPAJTbl KYHIBI TYCIHIK Oepin KaHa KOWMaIbl, COHBIMEH KaTap THIM/I1
JBIOBICTBIK aYBITKYJAp/bl AHBIKTAY KYHEJIEpiH EHri3YAiH KHUBIHIBIKTapbIH
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HIapjiayra THIPBICATBIH 3€PTTEyLIUIep MEH ToXIpHOelIiyiep YVIIH Herisri
HYCKAYJIBIK OOJIBIT TaObLIAIbI.

Tyiiin ce3aep: JIpi0bic AHOManuschiH AHbIKTaY, Tepernnetin OKBITY,
Konsomonusuieik Heviponapik Keminep (Cnn), Kaiitananarsin Heliponabik
Keninep (Rnn), I'nbpunri Moaensuep, Kansimran Treic JIpIOBICTEI AHBIKTAY.
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OBHAPYXEHUE 3BYKOBBIX AHOMAJIMI B ITPOMBIIIJIEHHBIX
CPEJAX B PEXKUME PEAJIBHOT'O BPEMEHMU C IOMOLIIBIO
I''IYBOKOI'O OBYYEHUA

A”HOTanuss. B orBer Ha pacTymui COpoc Ha IOBBILIEHUE
NPOMBINUICHHOH  0Ge30macHOCTH U 3(G(EKTUBHOCTH 3TO  HCCIEIOBaHUE
yrIIyonsieTcss B 00JIaCTh OOHAPYKEHHUSI 3BYKOBBIX aHOMAIIMH B MPOMBIIIICHHBIX
cpelax, UCHOIB3Ysl BO3MOXKHOCTU TIIyOoKkoro odyudenus. CocpeioTOYeHHOE Ha
YCTPAaHEHUHM OIPaHMYEHUH TpaJULHUOHHBIX METO/OB, HCCIEA0BAHUE HCCIIEAYET
pasInyHble ApXUTEKTYphl TIyOOKOro oOy4yeHHs, BKJIIOYash CBEPTOYHBIE
Heiiponnsie cet (CNN), pexyppentasie Heliponnsie cetn (RNN) u rubpuinbie
MOJIeNI, YTOOBI OILEHUTh MX 3((HEKTUBHOCTH B OOHAPYKEHUM aHOMAJbHBIX
3ByKOB. MccrnenoBaHue TIIATEIbHO OIIEHMBAeT HAOOpPbI JIaHHBIX, METObI
npeaBapuTeNbHON O00paOOTKM U KOHTPOJIbHBIE MOKa3aTeaH, HpeJoCTaBIss
BCECTOPOHHUN 0030p COBPEMEHHBIX MOJIENEeH U UX NMPUMEHEHHS B Pa3IMYHBIX
OTpacJIAX IPOMBIILIEHHOCTH.

B nokyMeHTe TIIATENbHO AHATU3UPYIOTCA IOKA3aTeNM  OLIEHKH
IPOU3BOIUTENLHOCTH, MPOBOASTCS CPaBHEHUSI MEXAY ITyOOKHMM OOy4deHHEM U
TPaJMLMOHHBIMU METOJAaMH OOHapyXXeHHUs 3BYKOBBIX aHoMaiuil. PeanbHble
IPWIOKEHUS U TEMAaTUYECKHE MCCIEN0BAaHUSA IOTYEPKUBAIOT IPAKTUYECKYIO
3HAUUMOCTh ATHX JOCTHKeHuH. [lpu3HaBas JOCTHKEHMS, MCCIEIOBAHHE
BBISABIISICT MPOOJEMBI M TMpeajaraeT HampaBieHUs Ha Oynayliee, MOAYepKHUBas
HEOOXOUMOCTh MHHOBALMOHHBIX DPEIIEHUN [UIsi MOBBIIIEHHUS HAJESKHOCTH U
NPUMEHUMOCTH B PEaJbHBIX YCIOBHUAX OOHApYX EHMs 3BYKOBBIX aHOMAalUil Ha
OCHOBE TTTyOOKOr0o 00y4YeHUs B IPOMBIIUICHHBIX YCIOBHSX.

370 HccaeI0BaHKE HE TOJIBKO JJaeT LIEHHYI0 HH(OpMAIUIO 0 IepeceueHI
TyOOKOTO 00yUYEHHUS ¥ aHaJIM3a MMPOMBIIIIIICHHOTO 3BYKa, HO U CITY’KUT OCHOBHBIM
PYKOBOJICTBOM JIs MiCCTIeioBaTee U MPaKTUKOB, CTPEMSIUXCA pa3odparbes B
CIIOKHOCTSIX BHEApEeHHS dS(PPEKTUBHBIX CHUCTEM OOHAPYKEHUSI 3BYKOBBIX
AHOMAJIHM.
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oOyuenue, ceeprounbie HelipoHHble ceTu (CNNS), pexyppeHTHBIE HEHpOHHBIE

cetu (RNNS), I'n6punnbie monenu, OOHapyXeHHE aHOMAIBHBIX 3BYKOB.
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