SDU Bulletin: Natural and Technical Sciences 2021/1 (54)
IRSTI 14.01.85

M. Zhuniskhanov!, R. Suliyev?
L2Suleyman Demirel University, Kaskelen, Kazakhstan

IMPLEMENTING COURSE SCHEDULE GENERATION
APPLICATION FOR UNIVERSITY

Abstract. This work is about researching and implementing Course
Schedule Generation Application for university. She compares other similar
applications in this area and explores important points. Through UML diagrams,
important concepts and development progress are explained. Screenshots of
using the application will also be provided. Dataset, configuration and rules
explained. In the end, we will talk about the importance of such an application
and facilitate planning for the university.

Keywords: course, scheduling, university, rules, implement.

*kk

AHHOTauMsl. OTa paboTa MOCBSIIEHA MCCIEJOBAHUIO U BHEIPEHUIO
IPUWJIOKEHUS Ul COCTABJICHUS PACIMCaHUs KypcoB A yHuBepcutTeTa. OHa
CpPaBHUBACT Jpyrue NOJOOHBIE NPUIIOKEHUS B 3TOW 00JacTH M HCCIenyeT
BakHble MOMeHThl. C mnomouipio auarpaMM UML 0OBSCHSIOTCS BaKHBIE
KOHLIETIUN U XOJ pa3paboTku. Tarxke OyAayT NpenoCcTaBI€Hbl CKPUHIIOTHI
UCIIONIb30BaHusl TNpuiiokeHus. HaOop naHHBIX, KOH(UTrypauus U IpaBUiia
00BsICHEHBl. B KOHIIE MBI MOTOBOPUM O Ba)KHOCTH TaKOIO MPUIIOKEHHUS U
o0JerdyeHue MIaHUPOBAHUE Ul YHUBEPCUTETA.

KiroueBbie cji0Ba: Kypc, IUIAHUPOBAaHUE, YHHUBEPCUTET, IpaBUIIA,
OCYILIECTBIIATS.

*kk

AnaaTrna. byn KyMBIC YHUBEPCHUTETIH KypcTap KECTECIH Kacayibl
3epTTey >KOHE KOCBHIMINIA €HTI3y YIIiH apHanrad. On 6acka Ja OChl cajajarbl
OCBIH/Iali OarmapiiaManap/bl CaabICTRIPAAbl, MAHBI3BI KepIepaepiH 3epTTEiIi.
UML nunarpammanap KeMeriMeH MaHbI3/Ibl TYKbIpbIMJaMaiap TYCIHAIpiIeal
XKoHe d3ipiey Oapbichl alKpiHIamaabl. CoHAal-aK, KOChIMINANAp Maiganany
CKPUHIIIOTTAPBI YCHIHBIIATHIH 00JIafbl. JlepeKkTep KUBIHTBIFBI, OPHATY epekeci
tyciaaepineni. ConpiHaa 013 KOCBIMIIIANAP MAaHBI3IbLUIBIFEI MEH YHUBEPCHUTET
YIIiH jKOCTapiay *KeHUICTUICTIHAIT Typaibl SHTIMEeH .

Tyiiin ce3aep: Kypc,)xocnapiay, yHUBEPCUTET, EPEKE.

11

SDU Bulletin: Natural and Technical Sciences 2021/1 (54)

Introduction

A university course timetabling refers to the allocation of courses offered
to fixed timeslots and rooms with respect to the number of lecturers available at
that time [1]. Optimal Course schedule makes staff and students feel satisfactory
and saved time for administrators. The application is designed to keep records
of course scheduling to compare and choose most suitable

The application uses open source systems. Also it is user friendly and
easily configurable.

Aim

Aim is to create application using optaplanner and drools rule engine,
which allows set constraints in flexible manner. It gives options to use different
settings to select algorithms, in a selected time or condition stop program
execution. Such application provides necessary information for user to select
best options, so that he can iterate the cycle changing settings and executing to
obtain optimal result. Optimal result motivates staff and students to focus only
on teaching and studying courses.

Technologies currently in use

For now, almost every university develop their own system or adopt
already developed system from another universities. One of the examples of
university timetabling software is the UTTS system [2] developed at the National
University of Singapore. There are also open source libraries for further
development and integration. Unitime [3] and Optaplanner [4] are some
examples of them. They are no only focused on course scheduling also they solve
other metaheuristic problems.

Keeping in mind the software integration tools and the dataset and
infrastructure also impacts the decision which software to choose. In this project
we choose optaplanner as base system for further integration.

Project development

In UML diagram you can see an architecture and logic of project.
According to sequential UML diagram user have option to configure settings.
First activity is main page. Main page has fields to be filled, the execution time
and unimproved count of steps, they affect the stop condition of program. Also
some soft constraint can be added to program like some lecturers can not teach
in certain time. After user can press start button to start course scheduling
execution under the hood. User entered data saved to database.

Second activity is maintained by program it collects data from database,
the settings applied to program and data rearrangement occurs using algorithms.
On every step rules check the satisfaction over constraints. After time timeout or
unimproved step count exceeds limit program stop and final condition saved to
database. UML diagram shown in Figure 1.

In last step user can view result if it not satisfactory then restarts course
scheduling till optimal result obtained.

12

SDU Bulletin: Natural and Technical Sciences 2021/1 (54)

[’ Actor

- L pr—
input parameters J L Result ‘
liiij <+ | —» {

| 1. Timeout value Save Results

| 2. Unimproved step Show previous
| count : results

| 3. Soft constraints
| 4. Rules

|

< ,
‘ | ‘
Input \ input
4“ ot

Figure 1. Use-case UML diagram of project

Use-case diagram shows how engine works when user presses start.
Engine has algorithms to efficiently find solution and rules to structure data in
needed manner.

Intermediate result can be viewed by clicking result button. Also
constraint satisfaction score also shown. If its satisfactory enough then course
generation can be interrupted.

In detail program uses three types of data, the main data are the courses
themselves and its related data as teachers, classrooms, time periods. Their
bunch form the result. You can see a bunch of data in figure 2.

Lecturer Course Definition
Groups
PK | Lecturerid H——————0< PK | CourseDefintionid

PK | Groupid
FirstName FK1 | Lecturerid
Student size
LastName Hours L
—O€
Type

Hall Course Period
| — <
Pk | Hanig L PK | Courseld PK | Periodid
No L CourseDefinitionld Day of Week
Depertment =+ Hallld Hour
Periodid

Figure 2. Course related objects

Settings can also be attributed to one type of data. In the java version of
optaplanner it is possible to make settings through an xml file. the file contains
a setting for selecting an algorithm for the first data filling in order to facilitate
the work of the main algorithm for finding the optimal solution. The second item
is the settings for the main algorithm, along with it there are different settings

13

SDU Bulletin: Natural and Technical Sciences 2021/1 (54)

for the action. Actions are when the classrooms are replaced at every step or the
time the course begins to check for compliance with the rules. An example setup
is shown in figure 3.

The third kind of data is the rule. From the rules describe the required
location and the duration of the courses. The optimal result, she meets all the
rules. Rules can be hard and soft constraints. Hard constraints are those without
which it is impossible to conduct some kind of course. And soft constraint are
requirements that it is desirable to observe, but if they interfere with hard
constraints then they can be overdone.

<?xml version="1.@8" encoding="UTF-8" 7>
<solver>
<environmentMode>REPRODUCIBLE</environmentMode>
<scanAnnotatedClasses />
<scoreDirectorFactory>
<ksessionName>schedulelsession</ksessionName>
</scoreDirectprFactory>
<termination>
<terminationCompositionStyle>0R</terminationCompositionStyle>
<bestScorelinit>Bhard/@soft</bestScoreLinit>
<minutesSpentLimit>5</minutesSpentLimit>
</termination>
<constructionHeuristic>
<constructionHeuristicType>FIRST_FIT_DECREASING</constructionHeuristicType>
</constructionHeuristic>
<localSearch>
<unionMoveSelector>
<changeMoveSelector/>
<swapMoveSelectors>
<filterClass>kz.sdu.schedule.solver.DifferentCourseSwapMoveFilter</filterClass>
</swapMoveSelectors
</unionMoveSelectors
<acceptor>
<lateAcceptanceSize>600</latefcceptanceSizes
</acceptors
<forager>
<acceptedCountLinit>4</acceptedCountlimit>
</forager>
</localSearch>
</solver>

Figure 3. optaplanner course scheduling configuration

In our program, we use the drools rules program, which is quite
autonomous and works more efficiently than the rules written in java code. An
example of the rules is shown in figure 4.

14

SDU Bulletin: Natural and Technical Sciences 2021/1 (54)

import org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScoreHolder

import kz.sdu.schedule.planning.Schedule
import kz.sdu.schedule.planning.Course
import kz.sdu.schedule.planning.Date

dimport kz.sdu.schedule.planning.Lesson
import kz.sdu.schedule.planning.Room

import kz.sdu.schedule.solver.CourseConflict

global HardSoftScoreHolder scoreHolder;

rule "roomOccupancy”
when
Lesson($leftId : id, date !'= null, $weekDay : date.weekDay, $hour : date.hour, room != null, $room : room)
not Lesson(date.weekDay == $weekDay, date.hour == $hour, room == $room, id < $leftlId)
Lesson(date.weekDay == $weekDay, date.hour == $hour, room == $room, id > $leftId, $rightId : id)
then
scoreHolder.addHardConstraintMatch(kcontext, -1);

end

rule "lessonsWithSameTeacherInSameTime"
when
kggggg(iid: id, $roomId : room!.id, $teacherId: course!.teacher!.id)
Lesson(id » $id, room!=null, room.id == $roomId, course.teacher.id == $teacherId)
then
scoreHolder.addHardConstraintiatch(kcontext, -2);
end

rule "conflictinglessonsDifferentCourseInSamePeriod”
when
$courseConflict : CourseConflict(§leftCourse : leftCourse, $rightCourse : rightCourse)
§1eFTLesson : Lesson(course == $leftCourse, $weekDay: date!.weekDay, $hour: date!.hour, date != null)
$rightlesson : Lesson(course == $rightCourse, date!.weekDay == $weekDay, date!.hour == $hour, this != $leftlLesson)
then
scoreHolder.addHardConstraintHatch(kcontext, - $courseConflict.getConflictCount());
end

Figure 4. Drools rules

After launch, the system produces a result that can be used for the school
year. For a good result, it is advisable to run a system with different algorithms
and with a period of not less than an hour. An example result obtained for our
data is given below.

Course schedule

e rwiay Tusmrsaiary et

Figure 5. Course scheduling result

15

SDU Bulletin: Natural and Technical Sciences 2021/1 (54)

Conclusion

The goal of this paper was to develop an application for course
scheduling for universities. The paper itself provides the project overview. It
starts with some background information about application development and
presents features of course scheduling application from the point of view of
developer.

Then it moves on the description of the design of the application,
providing some short justification for application design decision taken during
development. Then the paper describes overall architecture of the application,
covers some of the technically challenging or otherwise interesting features that
have been implemented.

I hope this application will be useful for people who responsible for
course scheduling in universities.

References

1 Wan Muhamad, Wan Zuki Azman & Adnan, Farah & Yahya, Zainor
Ridzuan & Junoh, Ahmad & Zakaria, Mohd. (2018). Solving university
course timetabling problems using FET software. AIP Conference
Proceedings. 2013. 020052. 10.1063/1.5054251. p.1.

2 Andrew L, Ang J. Chin, Ho W. Kit, and Oon W. Chong, A Campus-
Wide University Examination Timetabling Application, American
Association for Artificial Intelligence, 2-3, 2000. p.1.

3 Comprehensive University Timetabling System. URL:
https://www.unitime.org/

4 What is OptaPlanner? URL.: https://www.optaplanner.org/

16

