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GENERALIZED CONTINUED FRACTION EXPANSION FOR EULER 

CONSTANT 

 

Abstract. The theory of continued fractions is one of the oldest fields of 

number theory going back as far as Euclid 300 BCE. As opposed to generalized 

continued fractions, the theory of simple continued fractions is well-developed 

and finds many applications in various fields. In this article we consider a 

problem of elegant representations of famous mathematical constants with 

generalized continued fraction and prove that the Euler constant 𝑒 satisfies the 

generalized continued fraction formula 
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This is one of the conjectures generated in www.RamanujanMachine.com using 

machine learning techniques. Our method of proof uses only elementary 

techniques.  

Keywords: Generalized Continued Fraction, Euler number e, 

Ramanujan Machine, Number theory. 

 

*** 

Аңдатпа. Шектеусіз үздіксіз бөлшектер теориясы  Евклид секілді 

б.з.д 300 жыл бұрын қолданысқа еңген сандар теориясының ескі 

тармақтарының бірі болып табылады. Жәй үздіксіз бөлшектер теориясы 

шектеусіз үздіксіз бөлшектерге қарағанда кеңірек дамыған және көптеген 

салаларда өзінің қолданысын тапқан. Бұл мақалада біз  белгілі 

математикалық тұрақтылардың көрінісін шектеусіз үздіксіз бөлшектер 

арқылы қарастырамыз және Эйлер константасы е-нің төмендегі шектеусіз 

үздіксіз бөлшектер формуласына сәйкес келетіндігін дәлелдейміз. 
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Бұл www.RamanujanMachine.com сайтында машиналық оқыту әдістерін 

қолданып жасалған болжамдардың бірі. Біздің дәлелдеу әдісі тек 

қарапайым әдістерді қолданады.                   
              Түйін сөздер: Шектеусіз үздіксіз бөлшектер, е Эйлер саны, 

Рамануджан машинасы, Сандар теориясы 

http://www.ramanujanmachine.com/
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*** 

         Аннотация. Теория непрерывных дробей - одна из старейших 

областей теории чисел, восходящая к Евклиду 300 г. до н. э. В отличие от 

обобщенных цепных дробей, теория простых непрерывных дробей хорошо 

развита и находит множество применений в различных областях. В этой 

статье мы рассматриваем проблему элегантного представления известных 

математических констант с помощью обобщенной цепной дроби и 

доказываем, что постоянная Эйлера e удовлетворяет формуле обобщенной 

цепной дроби 

𝑒
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Это одна из гипотез, созданных на сайте www.RamanujanMachine.com с 

использованием методов машинного обучения. Наш метод доказательства 

использует только элементарные приемы. 

          Ключевые слова: Обобщенные цепные дроби, Постоянная Эйлера 

е, Машина Раманджана, Теория чисел 

1. Introduction 

Infinite (generalized) continued fractions have the form 

 𝑏0 +
𝑎1

𝑏1 +
𝑎2

𝑏2+
𝑎3

𝑏3+.....

, 

for the given sequences (𝑎𝑛) and (𝑏𝑛) of integers. For simplicity of notation we 

instead write 

 

 

                                              𝑏0

+
𝑎1

𝑏1 +
 

𝑎2

𝑏2 +
  

𝑎3

𝑏3 +
…. 

                                  

(1)                 

We say that a real number 𝑥 has a continued fraction representation as in (1) if  

 

𝑥 =  lim
𝑛→∞

𝐴𝑛

𝐵𝑛
, 

where for any 𝑛 we define the approximants 𝐴𝑛,  𝐵𝑛 by 

 
𝐴𝑛

𝐵𝑛
  =  𝑏0 +

𝑎1

𝑏1 +
 

𝑎2

𝑏2 +
  

𝑎3

𝑏3 +
…

𝑎𝑛

+𝑏𝑛
.                                     (2)    
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When 𝑎𝑛 = 1 and 𝑏𝑛 ∈ 𝑁 for all 𝑛, it is called the simple continued fraction 

expansion, one of the well-studied fields in number theory. Simple continued 

fractions yield unique representations for irrational numbers, with the 

approximants being the best rational approximations. However, when 𝑎𝑛′𝑠 are 

allowed to vary, the representations are not necessarily unique which provides 

opportunities for finding elegant generalized continued fraction representations 

of the given number. Euler himself obtained [4] simple continued fraction 

representation of his famous constant e. One of the well-known continued 

fraction representations for e is given by  

 

𝑒 = 2 +
1

1 +
 

2

2 +
  

3

3 +

4

4 +
…. 

 

Recently, researchers have created a program [3] that independently 

generates representations of mathematical constants, such as 𝑒  and  𝜋, in the 

form of infinite continued fractions, without proof. The generated expressions 

resemble formulas obtained by a mathematician of the beginning of the 20th 

century Ramanujan. The algorithm is called "Ramanujan Machine" and the 

method of finding expressions is a new approach, reminiscent of the intuition of 

mathematicians rather than the logic of formal proofs. From a technical point of 

view, the Ramanujan Machine is a distributed computing program that 

iteratively finds expressions with continued fractions, combining algorithms of 

meeting in the middle and gradient descent. Both algorithms work by gradually 

selecting an increasingly accurate numerical value, therefore the result is only 

unproven hypotheses, the truth of which must be strictly confirmed by other 

methods. 

In this note, our goal is to prove one of the conjectures listed in 

Ramanujan site. To this end, our main result is the following. 

Theorem 1. The Euler constant e satisfies the following continued 

fraction representation 

 

 
𝑒

−2
= −1 +

1

−2 +
4

−4+
8

−6+
12

−8+.....

. 

 

In the next section we prove Theorem 1 using elementary tools. The idea is based 

on transforming the problem into series representation of e.  
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2. Proof of Main Result 

 In this section we prove our main result, Theorem 1. It is easy to see that 

the approximants 𝐴𝑛 and 𝐵𝑛 given in (2) satisfies the following difference 

equations with non-constant coefficients 

             𝐴𝑛 = 𝑏𝑛𝐴𝑛−1 + 𝑎𝑛𝐴𝑛−2 , 𝐵𝑛 = 𝑏𝑛𝐵𝑛−1 + 𝑎𝑛𝐵𝑛−2 , 𝑛 ≥ 1,                             
(2) 

                                   𝐴−1 = 1, 𝐴0 = 𝑏0, 𝐵−1 = 0, 𝐵0 = 1,                                               
(3) 

where the sequences (𝑎𝑛) and (𝑏𝑛) are coming from the continued fraction 

expansion. Thus, provided that 𝐴𝑛, 𝐵𝑛 are found, one obtains 𝑥 by taking the 

limit of the quotient 𝐴𝑛/𝐵𝑛. However, computing closed form arrangements to 

distinction conditions as in (2) with variable coefficients 𝑎𝑛, 𝑏𝑛 is troublesome. 

A basic approach is to figure out the closed form of  𝐴𝑛   and 𝐵𝑛  from the primary 

few terms and demonstrate it utilizing mathematical induction. Lately, this 

approach was utilized in [1] and in [2] to demonstrate one of the numerous 

conjectures on generalized proceeded division development for Euler number 𝑒 

listed in [3]. 

Using the similar approach, we prove one of the conjectures for 𝑒, 

Theorem 1. The first step is to recovery the 𝑎𝑛, 𝑏𝑛 terms. Take the recursive 

formula of 𝐴𝑛  and 𝐵𝑛   implementing (2) and (3). Calculate the first few terms 

of 𝐴𝑛 and 𝐵𝑛  and use OEIS website to seek for possible closed-form 

representations of 𝐴𝑛 and 𝐵𝑛. The next step is to prove the formula utilizing 

mathematical induction. Finally, take the limit of the quotient and show that it 

equals the desired conclusion. 

Proof of Theorem 1. 

Let 𝑎𝑛 and 𝑏𝑛 be given as in Theorem 1. We recall the initial conditions  

𝐴−1 = 1 , 𝐴0 = 𝑏0 , 𝐵−1 = 0, 𝐵0 = 1 and note that: 

𝑏0 = −1, 𝑏𝑛 = −2𝑛, 

𝑎1 = 1, 𝑎𝑛 = 4(𝑛 − 1). 

Substituting into (2) and using (3) we see that 

(𝐴𝑛 ) =   (3, −16, 120, −1152, 13440, … ). 
The search from https://oeis.org/  website using the first 5 terms of 𝐴𝑛 yields 

exact match with the terms of  the sequence A187735 which has the following 

closed form representation 

𝐴𝑛 = (−1)𝑛−12𝑛−1(𝑛 + 2)𝑛!                                                 (3) 

https://oeis.org/
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 which still requires a proof. Next we see that 𝐵𝑛 satisfies 

𝐵𝑛 = (1, −2, 12, −88, 848, −9888, … . )                                (4) 

We see that 𝐵𝑛 can be represented as a product of OEIS sequence A000255 with 

(−2)𝑛. More specifically, we have  

        𝐵𝑛 = (−2)𝑛 [
(𝑛 + 2)𝑛!

𝑒
],                                                          (5) 

where the symbol [ ] stands for the nearest integer. We still need to justify (5).   

We now turn in proving (3) using mathematical induction. It clearly holds for 

the basis step. More specifically, the first two terms satisfy 

𝐴0 = (−1)0−120−1(0 + 2)0! = −1, 

𝐴1 = (−1)1−121−1(1 + 2)1! = 3. 

Now, let us assume  𝐴𝑘 = (−1)𝑘−12𝑘−1(𝑘 + 2)𝑘!     ∀𝑘 ≤ 𝑛, 𝑛 ≥ 1 and set 𝑘 =

𝑛 + 1. Using the recursive relation, we get 

𝐴𝑛+1 = 𝑏𝑛+1𝐴𝑛 + 𝑎𝑛+1𝐴𝑛−1 

      =  −2(𝑛 + 1)(−1)𝑛−12𝑛−1(𝑛 + 2)𝑛! + 4𝑛(−1)𝑛−22𝑛−2(𝑛 + 1)(𝑛 − 1)! 

     = (−1)𝑛2𝑛(𝑛 + 2)(𝑛 + 1)𝑛! + (−1)𝑛−22𝑛 × 𝑛(𝑛 + 1)(𝑛 − 1)! 

     = (−1)𝑛2𝑛(𝑛 + 2)! + (−1)𝑛−22𝑛(𝑛 + 1)! 

     = (−1)𝑛2𝑛(𝑛 + 1)! (𝑛 + 2 + (−1)−2) 

     = (−1)𝑛2𝑛(𝑛 + 1)! (𝑛 + 3), 

which finishes the proof of (3) by mathematical induction.  

We turn in justifying (5). We use a simple change of variable to show that our 

recursive relation (2) for  𝐵𝑛 is equivalent to the recursive relation provided in 

OEIS site for the sequence A000255, namely 

𝑎(𝑛) =  𝑛 ∗  𝑎(𝑛 − 1) +  (𝑛 − 1) ∗  𝑎(𝑛 − 2), 𝑎(0) =  1, 𝑎(1)

=  1.                   (6) 

To this end, we substitute 𝐵𝑛 = (−2)𝑛𝐶𝑛, 𝑛 ≥ 1 into (2) with  

𝑏𝑛+1 = −2(𝑛 + 1) and  𝑎𝑛+1 = 4𝑛 and obtain 

 

(−2)𝑛+1𝐶𝑛+1 = −2(𝑛 + 1)(−2)𝑛𝐶𝑛 + 4𝑛(−2)𝑛−1𝐶𝑛−1, 
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Which simplifies to 𝐶𝑛+1 = (𝑛 + 1)𝐶𝑛 + 𝑛𝐶𝑛−1,   𝑛 ≥ 1 or  

𝐶𝑛 = 𝑛𝐶𝑛−1 + (𝑛 − 1)𝐶𝑛−2,   𝑛 ≥ 2 

with initial conditions 𝐶0 = 𝐵0 = 1  , 𝐶1 =
𝐵1

−2
= 1. It follows that 𝐶𝑛 is 

equivalent to (6), the recursive relation from OEIS website corresponding to the 

sequence A000255. On the other hand, OEIS also provides the formula for 

A000255 proposed by Simon Plouffe, March 1993: 

𝐶𝑛 = [
(𝑛 + 2)𝑛!

𝑒
]     ∀𝑛 ≥ 1. 

Thus, we conclude that  

        𝐵𝑛 = (−2)𝑛𝐶𝑛 = (−2)𝑛 [
(𝑛 + 2)𝑛!

𝑒
].                                         (7) 

It remains to show that  𝐴𝑛/𝐵𝑛 tends to the desired limit −𝑒/2. Using the fact 

that [ ] is the nearest integer symbol, we may write 𝐵𝑛 as 

𝐵𝑛 = (−2)𝑛 (
(𝑛 + 2)𝑛!

𝑒
+ 𝜀(𝑛))   where  − 0,5 < 𝜀(𝑛) < 0,5.                (8) 

Using (3) together with (8) we arrive at 

lim
𝑛→∞

𝐴𝑛

𝐵𝑛
=

(−1)𝑛−12𝑛−1(𝑛 + 2)𝑛!  

(−2)𝑛 (
(𝑛+2)𝑛!

𝑒
+ 𝜀(𝑛))

=
𝑒 

(−2 − 𝜀(𝑛)/((𝑛 + 2)𝑛!)
=

𝑒

−2
. 

This finished the proof of Theorem 1. 

3. Conclusion 

In this paper, a special representation of numbers called continued fraction 

is studied. The continued fraction has a rich history and it is one of the most 

striking and powerful representations of numbers. For e, a continued fraction 

expansion often reveals beautiful number patterns which remain obscured in 

their decimal expansion. In our work we tried to prove some new continued 

fraction identities for Euler constant e which has taken from Ramanujan site. The 

proof here is direct and elementary, where we use the recursive formula to derive 

closed form formulas for the convergents of particular continued fractions. 

 

 

https://oeis.org/wiki/User:Simon_Plouffe
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