SDU Bulletin: Natural and Technical Sciences 2021/2 (55)
IRSTI 06.58.45

M. Zhuniskhanov?, R. Suliyev?
12Suleyman Demirel University, Kaskelen, Kazakhstan

OPTIMIZATION ALGORITHMS OVERVIEW FOR COURSE
SCHEDULING

Abstract. Today we have a lot of optimization algorithms that can be
used for course scheduling, but the main question is which of them fulfills our
requirements better and what are the advantages of one from the others. Since
course scheduling is an NP-problem, in this article we will look at a few of
algorithms that are used to solve different problems and have proved themselves
only on the best side and compare their main advantages. When comparing, we
will rely not only on the accuracy of the results, but also on the speed of solving
complex problems, and on solving complex conditions.

Keywords: algorithm, score, schedule, course, constraint.

**k*

Anparna. byrinae 0i3ne KenTereH alropuTMAEpAl KypcTap KecTeciH
OHTaWNaHABIPY YIIIH MHaiinamaHyra Oomnajabl, Oipak OGacTbl Macese, KalChIChI
Oi37iH TajamTapra JKaKChl Jkayam Oepeli JKoHE KaHChIChl OacKachIHAH
apThIKIIBLIBIKTApel O0ap. Kypc xocmapmay NP-mpoGnema Gombin
TaOBLIATHIHABIKTAH, OChl Makajiaaa 013 OlpHelle aaropuTMJIep KapacTblpaMbi3,
oJlap op TYpPJi MIHIETTEp.l IIEeNly YIIiH MaiJalaHblIa bl)KOHE ©3]IepiH TeK
KAKChl JKarblHAaH KOPCETTl, COHBIMEH KaTap OJapAblH HEri3rl
apTHIKIIBUIBIKTAPbIH calbICTbIpamMbl3. CanbICThIpy Ke3iHJe, 013 HOTHXKEIepiHiH
JONIITIHE FaHa eMec, COHJAal-aK KypAesl MIHAETTEp/l IIEeNly >KbLIJIaMIIbIFbI
MEH KYpJIei XKaFAal bl ey KepceTKilliHe KapaiMbl3.

Tyiiin ce3aep: anroputM, O6aranay KecTeci, Kypc, EKTey.

*kk

AnHoTanusi. CerogHsi y HaC €CTb MHOT'O aJTOPUTMOB ONTHUMH3ALINH,
KOTOpPBIE MOKHO HCMOJIb30BAaTh MJII COCTaBJICHUS PACHUCAHUS KYpCOB, HO
TJIaBHBIN BOMPOC B TOM, KAaKOW M3 HUX Jy4Ille OTBEYAET HAIIUM TPEeOOBAHUSIM U
KaKOBBI IPEUMYIIIECTBA OJHOTO HaJ APYTrUMH. [I0CKOJIbKY IJTaHMpOBaHUE Kypca
sisercss NP-mpoOnemoii, B 3TOi CTaTbe MBI PACCMOTPUM HECKOIBKO
JITOPUTMOB, KOTOPBIE HCIHOJB3YIOTCA JUISl PEIICHUS pPa3IW4YHbIX 3a7ad U
3apeKOMEHI0BAIN ce€0sl TOMBKO C Jy4IIed CTOPOHBI, 1 CPAaBHUM MX OCHOBHBIE
npeumymectBa. [Ipu cpaBHeHUN MBI Oy/1eM TTOJIaraThCsl HE TOJIBKO HA TOYHOCTh
pPE3yJbTATOB, HO M HA CKOPOCTh PELIEHUS CIIOKHBIX 3a/1a4, a TAKXKE Ha PEIICHUE
CJIOKHBIX YCJIOBHH.

KiroueBble ¢Ji0Ba: alroput™, olleHKa, rpaduk, Kypc, OrpaHHYeHUE.

17

SDU Bulletin: Natural and Technical Sciences 2021/2 (55)

Introduction

University course scheduling is assigning set of time periods and rooms
to a course by scheduling lectures of this course by applying a variety of hard
and soft constraints [1]. Constraints are a set of rules for creating a course
schedule; they are divided into two types, hard and soft constraints. Our task is
to comply with Hard constraints and, if possible, reduce the mismatch to soft
constraints. Optimization algorithms each help to solve this problem.

Analysis

To compare the algorithms we choose the concept of score. The more the
result matches hard and soft constraint, the higher the score the algorithm will
score. Below we will familiarize ourselves with the four types of well-known
algorithms and their principles of operation.

A. Hill Climbing

Hill Climbing is a simple local search which tries to find moves with
highest score. By trying all selected moves and taking best move. And from this
action, he further cycles through all the options to find another best action. When
finding several best actions, he randomly selects one of them as the best.

The dignity of choosing the best action may seem like a good solution, but
the choice can lead to a local maximum. This happens when further actions can
worsen the result. If even one of them is selected, then the search trace may again
lead to the previously selected result.

The Hill Climbing pseudo-code is:

current = start
Loop do
1list = neighbours(current)
nextEval = -infinite;
nest = nill;
for all a in 1list
if eval(a) > nextEval
next = a;
nextEval = EVAL(a);
if nextEval <= EVAL(current)
return current; // Returning current, cause no best found
current = next;

Figure 1. Hill Climbing pseudocode

B. Tabu Search

As described Fred Glover, Tabu search is a strategy for solving
combinatorial optimization problems whose applications range from graph
theory and matroid settings to general pure and mixed integer programming
problem [2]. It works like Hill Climbing, the difference is that it holds a tabu list
to avoid local maximums. During movement it is not possible to use the objects
that are on the list, since they have already been used. A list can be anything that
relates to movement. The list is often customizable.

18

SDU Bulletin: Natural and Technical Sciences 2021/2 (55)

sBest ¢ s@
bestCandidate ¢ s@
tabuList ¢ []
tabulList.push(s0)
while (not stoppingCondition())
sNeighborhood ¢ getNeighbors(bestCandidate)
bestCandidate ¢ sNeighborhood[@]
for (sCandidate in sNeighborhood)
if ((not tabulList.contains(sCandidate)) and (fitness(sCandidate) > fitness(bestCandidate)))
bestCandidate ¢ sCandidate
end
end
if (fitness(bestCandidate) > fitness(sBest))
sBest ¢ bestCandidate
end
tabuList.push(bestCandidate)
if (tabulList.size > maxTabuSize)
tabuList.removeFirst()
end
end
return sBest]

Figure 2. Tabu Search pseudocode

C. Simulated annealing

Simulated annealing algorithm works in such manner: A step to be a
winning step, it’s move shouldn’t decrease the score. Some case move can
decrease the score if it passes a random check. The chance of passing this check
decreases relative to the size of score decrement and time the phase passes. The
main advantage of this algorithm is that it gives a chance to be selected actions
that do not improve the general condition.

s = s0
For k = @ through kmax (exclusive):
T ¢ temperature((k+1)/kmax)
Pick a random neighbour, snew ¢ neighbour(s)
If P(E(s), E(snew), T) 2 random(0, 1):
s € snew
Output: the final state

Figure 3. Simulated annealing pseudocode

D. Late acceptance

Known also as Late Acceptance Hill Climbing, accept the move which do
not decrease the score, or it leads to score that is at least the late score. By
Edmund K. Burke and Yuri Bykov stated this algorithm at each iteration, a
current solution is used to determine the acceptance of a new candidate. In other
words, a candidate solution is compared with a current one and accepted when
its cost function is not worse. Our idea is to delay this comparison, namely: to
compare the candidate solution with a solution, which was “current” several
steps before. Here, each current solution still takes on the role of an acceptance
benchmark, but it will be used at later steps [3].

19

Dataset

SDU Bulletin: Natural and Technical Sciences 2021/2 (55)

Produce an initial solution s
Calculate initial cost function C(s)
Set the initial number of steps I=0
For all k in (@.. L-1) C_hat[k]=C(s)
Do until a stopping condition
Construct a candidate solution sx*
Calculate its cost function C(sx%)

v =1 mod L

If C(s*) <= C_hat[v]

Then accept s*

Insert cost value into the list C_hat[v] = C(s)
Increment a number of steps I=I+1
End do|

Figure 4. Late Acceptannce pseudocode

The main goal is to schedule courses of a university, so our dataset
formed from course definitions, lecturers, rooms and groups.

Lecturer

PK

Lecturerld

H—————0< PK | CourseDefinitionld

FirstName

LastName

Hall

PK

Hallid

Course Definition

Groups

PK | Groupld

FK1 | Lecturerld
Student size
Hours

Type

Course Period

No

Deperiment

PK |Ccurse|d PK | Periodld
CourseDefinitionld Day of Week

Hallld Hour
Periodid

Figure 5. Dataset Relation

Also we will evaluate 3 type of course size to know how it impacts result
of algorithm evaluation. And the amount of other dependent data corresponds to

its number of courses.

Table 1. Dataset types

AOBuaTypa Course size

Problem 0 200

Problem 1 400

Problem 2 800
Comparison

For a full check, we will compare the result of the execution of the
compared algorithms using the optaplanner opensource program [4]. It integrates
easily with other programs and has a very rich and subtle settings. All algorithms

20

SDU Bulletin: Natural and Technical Sciences 2021/2 (55)

are also supported and a benchmarker is built in to compare results. Below is the
result of running benchmarker for 5 minutes.

Table 2. Hard and soft score result. 5-minute timing.

Salver Total Average Standard Deviation Prablem

Problem 0 Problem 1 Problem 2
Hill Climbing) -Bhard/-76soft -1hard/-26soft 14143373 Ohard/Osoft (@) Ohard/-3soft) -3hard/-73soft () @
Tabu Search (& ~Lihard/-117soft ~4hard/-39soft 5.2/38.88 Onara-3soft (€3 Onard21soft (@ -L1hard/-93soft €3
Simulated annealing (€ ~15hard/-354soft -Shard-118soft 6.38/57.28 Ohard!54s0t (€3 -Lhard/-193soft (€ -14hard!-107soft (]
Late Acceptance (€ “Ahard/-2027soft ~2hardl-676soft 2.0/749.69 Ohard69soft Onard!226soft (3 “Ahard1732soft (@

The Hill Climbing algorithm works well for data such as ours and
beyond, so if it is important to get the result very quickly, then the Hill Climbing
algorithm is a good choice.

Below figure 6 you can follow the order of growth of compliance with
the rules for elapsed time. The Hill Climbing algorithm works well for data such
as ours and beyond, so if it is important to get the result very quickly, then the
Hill Climbing algorithm is a good choice.

Problem_2 best hard score statistic

Best hand score

1m0 zma0s 3mas 4milos 5m

Hill Climbing (favorite) — Tabu Search - Simulated annealing Late Acceptance

Figure 6. Hard and soft constraint satisfaction vs time consume

Below table 2, you can follow the order of growth of compliance with
the rules for elapsed time.

Table 3. Hard and soft score result. 20-minute timing.

Solver Total Average Standard Deviation Problem

Problem_0 Problem_1 Problem_2
Hill Climbing & € -2hard/-17soft -1hard/-6soft 1.0/6.03 Ohard/osoft Ohard/-3soft @@ -2hard/-14soft (§
Tabu Search -7hard/-70soft -3hard/-24soft 3.37/24.86 Ohard/-1soft Ohard/-11soft (1 -Thard/-58soft
Simulated annealing (£ -3hard/-593soft -1hard/-198soft 1.41/170.95 Ohard/-29soft {2 Ohard/-132soft -3hard/-432soft (B
Late Acceptance o Ohard/-780soft Ohard/-260soft 0.0E0/193.51 Ohard/-63soft & Ohard/-194soft Ohard/-523soft o

21

SDU Bulletin: Natural and Technical Sciences 2021/2 (55)

For the same data, we will run a benchmark with a time of 20 minutes
and look at the final result and the implementation of compliance restrictions.

Problem_2 best hard score statistic

Best hard score

|
I

50s 1m40s 2m30s 3m20s 4ml0s Sm 5mS0s 6mé0s Tm30s Bm20s Smills 10m 10mS0sllmA0sl 15m 20m 20ms0
Time spent

— Hill climbing — Tabu Search — Simulated annealing Late Acceptance (favorite)

Figure 7. Hard and soft constraint satisfaction vs time consume

Here, according to the results, Late Acceptance showed itself well. In
which growth shows stability. For big data, it’s similar to ours and when time
allows, you need to use this algorithm.

Discussion

The dataset size and evaluation time has impact on the desired result, so
you need to analyze it with different values to get the best result. Also, following
the graph, you can combine the algorithms, first apply Hill Climbing, since it
shows itself well at first, then applying Late acceptance which shows stable
growth and gives the best result for long-term work.

Conclusion

As a result, all algorithms are designed to solve the course generation
problem, but they do it differently. The four algorithms considered can still be
compared with other metaheuristic algorithms to obtain even better results.

When comparing, we compared the results for a short run time where the
Hill Climbing algorithm showed better, also checked for a long run time, where
another Late Acceptance algorithm showed the highest result.

References

1 Schaerf, A. A survey of automated timetabling. Articifal Intelligence
Review, 13 (2), (1999): pp. 87-127.

22

SDU Bulletin: Natural and Technical Sciences 2021/2 (55)

2 Glover, F. Tabu Search-Part 1. ORSA Journal on Computing, 1 (3),
(1989): pp. 135-206.

3 Edmund, K.B., Bykov. Y. Conference: Proceedings of the Conference
on the Practice and Theory of Automated Timetabling (PATAT 2008),

p.1.
4 What is OptaPlanner? URL: https://www.optaplanner.org/

23

