SDU Bulletin: Natural and Technical Sciences 2021/2 (55)
IRSTI 50.13.13

Zh. Mamatnabiyev', M. Zhaparov?
L2Suleyman Demirel University, Kaskelen, Kazakhstan

COMPARATIVE ANALYSIS OF SORTING ALGORITHMS USED IN
COMPETITIVE PROGRAMMING

Abstract. Sorting is one of the most used and fundamental operation in
computer science since the first time it had been tried to arrange list of items in
some sequence. A large number of sorting algorithms were designed in order to
have best performance in terms of computational complexity, memory usage,
stability, and methods. In addition, in algorithmic problem solving, not all
algorithms have same efficiency. This paper makes comparison research and
discusses four different types of sorting algorithms: bubble sort, quick sort,
insertion sort, and merge sort. The algorithms are tested and compared for data
usage and time spent for sorting given amount of data.

Keywords: sorting algorithms, competitive programming, bubble sort,
insertion sort, quick sort, merge sort.

**k*

Angarna. Cypeinray — O0enriti 0ip Ti30eKTeri 3JIeMEeHTTEpIiH Ti3iMiH
perTeyre apHajJfaH KOMIIBIOTEPJIK FBUIBIMJIA €H KMl KOJJIQHBLIATHIH
onepanusuiapabiH Oipi. KenrereH cypeinray anroputMaepi ecentey KypAeaiiri
TYPFBICHIHAH €H aKChl OHIMJITIK, JKaJ1, TYPaKThIIBIK XKoHE 0acKa 1a 9JicTepMeH
naiganany yiriH KypacTteippuirad. COHBIMEH KaTap, aJlTOPUTMIIIK €CemTep/Il
mienry Kesinge Oapnblk Anroputmaep Oipaedt THIMIUTIKKE ue emec. by
Makajaja CaJIbICThIpMalibl 3€pTTeyJep IKYpri3uiedl JKOHE CYpBINTay
QITOPUTMIEPIHIH TOPT TYPJi TYpJiepl TaJKblIaHaJbl: KOMIPIIIKTI CYpHINTay,
KBUIAM CYpBINTAy, KIPICTIPY apKbUIbl CYPBINTAy MXOHE OIPIKTIPY apKbLIbI
cypsinTay. Ausroputr™maep Oenrinmi Oip JepekTep KeJeMiH CypbIITayFa
KYMCAJIaTBIH ~ yaKbITBl MEH KOJJIAHBUTY JKarblHAaH TECTUICHEeIl IKOHE
CaJIBICTBIPBLIAIBL.

TyiiiH ce3aep: cyphilTay aJIropuTMiaepi, OdceKeniK Nporpammanay,
KOMIPIIIKTI CYpBINITaY, €HI13Y apKbUIbI CYPBINITAY, KbUIJIAM CYpBINTAY, O1piKTIpY
apKBUIBI CYPHITITAY.

***k

AnHoTtanusi. COpTUPOBKa SBJIAETCS 0JJTHON U3 HanOoJee UCTIONb3YEeMbIX U
(byHIaMEeHTabHBIX ONepalfii B KOMIIbIOTEPHOW HayKe ¢ TeX MOop, KakK BIIEpBbIE
Obula TPEANPHUHSATA MOIMBITKA YINOPSJOYUTH CHUCOK AJIEMEHTOB B HEKOTOPOU
II0CJIEI0BATEIBHOCTU. bBOJbIIOE KOIMYECTBO AJITOPUTMOB COPTHPOBKH OBLIO
pa3paboTaHo, YTOOBI MMETh JYYIIYyI0 MPOU3BOIUTEIBLHOCTh C TOYKU 3pPEHHS

64

SDU Bulletin: Natural and Technical Sciences 2021/2 (55)

BBIYMCIUTEILHON CIIOKHOCTH, HCIOJIB30BAHUS ITaMATH, CTaOMJIBHOCTH |
MCTOHIOB. KpOMe TOro, HpI/I peIHeHI/II/I aJ]FOpI/ITMI/I‘-IeCKI/IX 3a1a4 HE BCC aJII‘Opl/ITMBI
UMEIOT OJMHAKOBYIO 3(P(PEKTUBHOCTD. B 3TOM cTaThe NPOBOJAUTCS CPABHUTEIHHOE
HUCCJICOOBAHUC H paCCManI/IBaIOTCSI quHpe pa3JII/I‘-IHBIX THUIIA aJ'II‘OpI/ITMOB
COPTHUPOBKH: ITy3bIpbKOBas COPTHPOBKA, OBICTpas COPTHUPOBKA, BCTaBKAa U
COpPTUPOBKA CIUSHUEM. AJIFOPUTMBI TECTUPYIOTCS U CPABHUBAIOTCS HA IPEIMET
UCIIOJIb30BaHUs JJAaHHBIX ¥ BPEMEHH, 3aTPAa4MBacMOI0 Ha COPTUPOBKY 3aIaHHOTO
o0beEMa JaHHBIX.

KioueBble cjioBa: arOPUTMbl COPTHPOBKH, KOHKYPEHTHOE
IpOrpaMMUPOBAaHUE, ITy3bIPHKOBAas COPTHUPOBKA, OBICTpas COPTHPOBKA,
COpPTUPOBKA BCTABOK, COPTUPOBKA CIUSHUEM.

Introduction

Sorting is a process of placing any kind of items in a list in certain order
or sequence, i.e. either ascending or descending order. Since first time people
tried to write some algorithms in order to sort unsorted order of elements, there
were built many algorithms. Through the years, problems needed less time to
sort arranged data. For example, bubble sort analyzed in early 1956s [1]. It
requires linearithmic time - O(n?) — in worst case, for better performance it is
possible in O(n) time. Quick sort is found more advanced for in-place data,
which is initiated by C.A.R. Hoarein 1961 and it is considered as the best
algorithm for decades [2]. After years another types of sorting algorithms were
built, i.e. quick sort, merge sort, binary search tree that require less time in
asymptotic Big-O notation. By 21st century asymptotically optimal algorithms
also have been invented, with now widely used Timsort dating to 2002, and the
Library sort being first published in 2006 [1]. Therefore, sorting algorithms have
always attracted a great deal of research.

There are two types of sorting techniques such as comparison-based and
non-comparison sorting technique. A comparison-based sort is a type of sorting
that reads list of elements and then decides which element must be placed first
and which one is next to make order items of the list at the final state. Bubble,
selection, insertion, etc. can be example for this type of sorting. Non-comparison
sorting technique sorts elements by their type and composition without
compering. Bucket sort and count sort can be example for this category of sorting
algorithm [2]. In this work, comparison-based sorting types are included.

The most important thing in sorting algorithms is their time complexity
and memory usage while using them. During competitive programming, most
problems require definite time and memory for running and executing the
solution written for the given problem. So, during comparison, most frequently
used sorting algorithms will be compared for by these two features.

Competitive programming is based on developing programming skills by
solving problems and tasks. Most competitive problems require their participants
to some tasks by its features such as data usage, memory and most often time for

65

SDU Bulletin: Natural and Technical Sciences 2021/2 (55)

running their solution to problem. For this purpose, most people prefer to use
comparison-based technique of sorting algorithm. Actually, this type of sorting
is simpler than another one and it recommends different kinds of sorting
algorithms that require less code by strength. As most often used sorting
algorithms in competitive programming, four types of sorting algorithms will be
discussed and analyzed.

Working procedure

A. Bubble sort

Basic idea of Bubble sort to compare two values and interchange them if
they are not in proper order is each element is compared with its adjacent element
to check which element is bigger and which element is smaller [3].

Analysis: Bubble is generally considered as the simplest sorting
algorithm, and for this purpose it is one of the most often taught sorting algorithm
while learning sort types in introductory courses [1]. Programming code strength
is less and can be completed easily. Time complexity of bubble sort is as follows:
O(n?) for worst and average case whereas O(n) for already sorted array. Effective
for sorting small amount of data. Let’s consider bubble sort on example (Figure
1).

B. Insertion sort

As its name says, in insertion sort works by inserting each item in its
proper place in the final list. The algorithm works by comparing first two
elements and swap it for required order, then increase it to by one element and
repeat first step until final sequence [3].

Analysis: Like bubble sort it is efficient for on small lists. In worst case
its time complexity O(n?). If data is already sorted, then its best case is O(n) [2].
Programming code can be written in a few lines of code and easy to understand
as shown in the Figure 2.

C. Quick sort

Quick sort woks by partitioning, the pivot element is chosen and if given
element is bigger or equal to pivot, it is placed to right side, otherwise it is put to
left part of the pivot element. This operation is recursively called until all given
elements are sorted [5].

Quick sort is the best example of sorting that is based on divide and
conquers strategy. It is one of the fastest sorting algorithms. That is why is used
in many libraries of programming languages [4].

Analysis: Running time of quick sort mostly depends on the selection of
pivot element. If pivot is selected randomly, then its runtime is O (n log n). For
the worst case its running time is O (n?) which happens rarely. It is not stable
algorithm but it is an in-place [4]. An example of work process is shown in the
Figure 3.

66

SDU Bulletin: Natural and Technical Sciences 2021/2 (55)

lel4lefs]2]a]1] Lilslefelo]2]3]
i=1 *-----mmmmmmmmmooooooes J i=2 i
lef4lefol2]1]s] Lil2]efale]o]s]
i=1 -] i=3 j
[elalefo]1]2]3] Lil2fs]slsle]s]
R — i i=4 i
[elafef1]o]2]s] Lil2]s[a]s]e]s]
=1 semmass J i=5 i
Lef4]t]elo]2]s] Lil2]afale]e]s]
=17 #=5==] i=6 |
lelrfafelo]2]s] Lil2fs]ale]s]s]
i=1] i=7

L1lelafelof2]s] :
i=1]
Figure 1. Bubble Sort example for sorting 7 elements in an array

12 | 9 | 4 | 9 [120] 1 | 3 10]

12 | 9 | 4 | 9 [120] 1 | 3 10]
T

9 12 4 | 9 120 1 | 3 10|

4 9 12| 9 120 1 | 3 10|

4 | 9 |12 9 [120] 1 |3 10]

4 | 9 |12 9 [120/ 1 |3 10]

1 | 4| 9 |12 | 9 120 3] 10|

| 4| 9 | 12| 99 [120] 10 |

=y
W

1 | 3] 4| 9 | 10] 12] 9 120]
Figure 2. Insertion sort example for sorting 8 elements in an array

D. Merge sort
Main idea of the merge sort is divide and conquer strategy technique
and is one of the most popular problem solving algorithm [4]. Extra array is
needed when dividing array into 2 parts until it gets to 2 elements, then swap
them if they are not in corresponding order. After comparing them join this
array to second sorted array. This process continues until final sorted list.

67

SDU Bulletin: Natural and Technical Sciences 2021/2 (55)

Analysis: For all cases (best, average and worst) for running time is O
(n log n). Unlike quick sort, it is not in-place algorithm, but it is stable [3]. The
strength of programming code takes much more lines than other three sorting
algorithms given above. That is why it is harder to complete algorithm.
However, it is easy to understand and complete without programming code
(Figure 4).

(a) 3 2 1 3 i1 4 [3 |7

(h) |I|1|3|5|3|4|3|—;| I:IPiwt

(c) |I |2|3 |3|4|5|ﬂ7 Final position
w [1]2]3]s]a]s]7]s]

@ [1]2]a]s]sfs]7]s]

Figure 3. Quick sort example for sorting 8 elements in an array

38|27|43|3|9|82|10

38|27 |43 | 3 9 (82|10
1/ y L
38 |27 43 | 3 91|82 10
A AN I N\
38 27 43 3 9 82 10
Y4 J/
27 | 38 3|43 91|82 10
\A A ¥
3127 |38 |43 9 (10|82

3/9|10|27 |38 (43|82

Figure 4. Merge sort example for sorting 7 elements in an array
Comparative analysis

In previous sections, learned about most often used sorting algorithms,
their working process, and algorithm and for what purposes they can be used.

68

SDU Bulletin: Natural and Technical Sciences 2021/2 (55)

According to that basic knowledge about those algorithms, they can be
summarized into one (Table 1).

Algorithms were tested on Operating System Windows 8.1 64-bit, Intel
(R) Pentium (R) CPU 2020M @ 2.40 GHz for 100, 1000, 10000 and 30000
elements of unsorted array. For 100 items of an array they all sorted in 0
seconds, but for larger data got different results (Figure 5).

1

4,5
4
3,5
S 3
v
o 25
£ 2
=
15
1
0,5 /
0
1000 10000 30000
e=@==Bubble ==@==Insertion Quick Merge

Figure 5. Time complexity tested for various amount of data

Table 1. Comparative study

Time Complexity
in| In- : -
Sortin Sortin | In Algorith | Stabili
g g pla
. Best Averag Worst m Type ty
Algorlth Type ce
case e case case
ms
Incremen
Intern tal and
2 2
Bubble O(N) O(N4) | O(N9 al Yes Exchang Yes
e
Insirtlo oN) | oN?) | oN?) In;elrn Yes Inct[zrlnen Yes

69

SDU Bulletin: Natural and Technical Sciences 2021/2 (55)

Typica
Divide I'In
Quick O(Nlog | O(Nlog O(N?) Intern Yes and Place
N) N) al .
Conquer | isnot
stable
Intern .
Divide
Merge O(Nlog | O(Nlog | O(Nlog | al and NG and Yes
N) N) N) Extern
Conquer
al
Conclusion

In this paper, four different types of sorting algorithms are discussed and
analyzed. Bubble and Insertion sorts are simple and easy to implement. Insertion
sort is faster than bubble sort. But both of them are inefficient for large data list.
Quick sort is very fast and it requires very less additional space. Merge sort is
also one of the fastest sort types, but it requires twice the space in memory as
compared with quick sort algorithm. For huge amount of data, merge and quick
sorts are preferable. If amount of data is small and definite size is already sorted,
quick sort is not good choice.

References

Kocher, G., Agrawal, N. Analysis and Review of Sorting Algorithms.
International Journal of Scientific Engineering and Research, Volume
2, Issue 3 (March 2014) pp. 81-84.

Verma, A. K., Kumar, P. List Sort: A New Approach for Sorting List to
Reduce Execution Time. Cornell University Library (26 October 2013).
Pathak, A., Vajpayee, A., Agrawal D. A Comparative Study of Sorting
Algorithm Based on Their Time Complexity. International Journal of
Engineering Sciences & Research Technology, no. 3 (12) (December
2014), pp. 629-632.

Ali, K. A Comparative Study of Well Known Sorting Algorithms.
International Journal of Advanced Research in Computer Science, no. 8
(1 Jan-Feb 2017): pp. 277-280.

Al-Jaloud, E. S., Al-Agel, H. A., Badr G. H. Comparative Performance
Evaluation of Heap-Sort and Quick-Sort Algorithms. International
Journal of Computing Academic Research, Volume 3, no. 2 (April 2014),
pp. 39-57.

70

