SDU Bulletin: Natural and Technical Sciences 2022/1 (58)
IRSTI 16.31.21

A. Tolegenova
Suleyman Demirel University, Kaskelen, Kazakhstan

AUTOMATIC ERROR CORRECTION: EVALUATING
PERFORMANCE OF SPELL CHECKER TOOLS

Abstract. Spell checking is the task of detecting and correcting spelling
errors in text and is one of the most sought-after processes in NLP. There are
many open-source toolkits for checking and correcting errors in the text. To test
how effective these tools are, in this article | have presented an evaluation of
three types of tools as NeuSpell, SymSpell and Hunspell. SymSpell showed a
high speed of 2480, this is an indicator of how fast it works than others. And
NeuSpell achieved the lowest error rate of 0.80%. The results show the
disadvantages and advantages of all algorithms, and that there is still room for
improvement.

Keywords: NLP, open-source tools, spell checking, detect, correct.

*k*k

AngaTtna. EmiieHi Tekcepy MOTIHAETI eMJyie KaTeJepiH aHBIKTay >KOHE
Ty3eTy MiHeTi Oobin TabbLIaabl xkoHe NLP-Te cypaHbIcKa ue mporuecTepiH
Oipi Oousibim TaObuTanmel. MOTIHAETI KaTenepi TeKcepyre >KOHE Ty3eTyre
apHaJlFaH KeITereH amblK Oacrankel Kypanaap Oap. byn kypangapabiy
KaHIIAIBIKTBI THIMJII €KEHIH Tekcepy YIIiH ockl Makamamga meH NeuSpell,
SymSpell xone Hunspell cuskThl KypanmapAslH YUl TypiH Oaraiay/sl
yeolHABIM. SymSpell 2480 >xorapbl >KbUIIAMABIKTBI KOPCETTI, OYJ OHBIH
Oackanapra KaparaHJa KaHIIAIBIKThI KbIIIaM)KYMBIC ICTEUTIHIHIH KOPCETKIIIIL.
An NeuSpell 0,80% xkaTemikTepAiH €H TOMEHT1 JCHTeWiHE KOJI >KETKI3II.
Hotwxenep GapiblK alropuTMIAEpAiH KEMIIUTIKTEpI MEH apThIKIIBUIBIKTapbIH
KOPCETE/I1 JKOHE 9711 JIe J)KaKcapTyFa MYMKIHJIIK Oap.

Tyiiin ce3nep: NLP, ambik GacTankpl Kypanjaap, eMIeH1 TeKcepy, aHBIKTay,

TY3€TYy.
**k*k

Annortauus. [IpoBepka opdorpadun sBisercs 3afgayeil oOHapy) eHUS U
ucrpaBieHuss opdorpadudeckux OmuOOK B TEKCTE W SIBISETCS OIUH U3
BocTpeOoBaHHbIX TporieccoB B HIIII. Iy mpoBepku U ucnpanieHue ook B
TEKCTE €CTh MHOKECTBO MHCTPYMEHTOB C OTKPBITOM MCXOJIHBIM KOJ1I0M. UTOOBI
IPOBEPUTh HACKOIBKO A(PQPEKTHUBHBI 3TH HHCTPYMEHTBHI, B ITOH CTaThe s
IpeJCTaBUiIa OLIEHKY TpeX THUIIOB HHCTPYMEHTOB, Takue Kak NeuSpell,
SymSpell u Hunspell. SymSpell mokazan Beicokuii ckopocts 2480, 3T0

15

SDU Bulletin: Natural and Technical Sciences 2022/1 (58)

MOoKa3aTellb TOTO HACKOJIBKO OBICTpO OHO paboraer ueM apyrue. A NeuSpell
nobuicst caMoil Hu3kuid ypoBeHb B ommbkax 0.80%. Pe3ynbTaTsl moka3biBaeT
HEJOCTaTKU M IPEUMYIIECTBA BCEX AITOPUTMOB, U YTO €CTh €Il MyTH IJs
VITyqIIEeHUS.

KuawueBsblie ciioBa: NLP, HHCTpYMEHTBI C OTKPBITBIM UCXOAHBIM KOJIOM,
npoBepka opdorpaduu, oOHapyKEeHUE, UCTIPABIICHHE.

I. Introduction

Natural Language Processing (NLP) is a subset of Al that focuses on how
natural language is processed. NLP uses machine learning algorithms to analyze
text and speech. Automatic spelling correction is one of the important problems
that many solve in NLP. This article walks through the algorithms and
approaches that can be used to understand automatic spell checking, finding the
errors, and correcting them. There are many software applications and tools here
that have achieved high accuracy of spelling correction and are also used in many
word processors and search engine applications. And the spell checker itself is
mainly used as a major pre-processing step in NLP to clean up text data before
it is passed to machine learning algorithms for classification.

Thus, for people who write and print text in different languages, spell
checking in the process has become one of the most sought-after and
indispensable. And also when writing search queries, many prints appear. And
the lack of a mechanism can lead to incorrect searches since the search server
displays information from the database using key phrases. The main aspects of
spell checking are first detecting errors and then correcting those errors.

Before actually implementing any approach to working with building a
spelling correction system, knowledge of spelling errors is required. There are
many works on errors and their definitions. For example, in the book Wagner
shows about four types of errors: errors of agreement, errors of superfluous
words, errors or missing words, and spelling errors of real words. [1] And there
are also Mitton's works, in which he analyzed the types of spelling errors, and
this work describes approaches to building an automatic spelling correction
system. [2] Spelling errors can be divided into different classes and categories,
and the main ones are realword errors and non-word errors. This can be seen in
the works of Pirinen [3], Kukich, [4] Tutanov and Moore [5].

Typographic errors (Non-Word Errors):

These errors occur when the correct spelling of a word is known, but the
word is entered by mistake. These errors are keyboard-related and therefore do
not meet certain linguistic criteria. Damerau[1] says that over 60% of spelling
errors fall into one of the following four categories, such as Single letter
insertion, Single-letter deletion, Single-letter substitution, and Transposition of
two adjacent letters. Cognitive errors (Real Word Errors):

These errors are caused by the disability of the person who writes the text,
I.e. the correct way of writing may not be known to the user. For example, a user

16

SDU Bulletin: Natural and Technical Sciences 2022/1 (58)

writing text may simply be learning a new language and not know the correct
spelling. This set of errors is language and user-specific as it is more dependent
on the use of language rules.

This work is a research work on the evaluation of development tools,
namely a set of open source tools for automatically checking typed texts and
their algorithms. The purpose of the research work is to study the already
existing solutions that were created for spell checkers, to describe the strengths
and weaknesses of these solutions. And also as an example, three currently used
and widespread approaches to solving the problem of text identification and
classification are considered. The first example is a model working with neural
networks. A second model is a tool that works with the help of machine learning
methods, namely using the n-gram model. The third is the models that were
developed in java, namely hunspell and language tool since Java and C ++ are
considered one of the most popular languages in product development.

The main idea is that by calculating the existences of all possible tools, you
can analyze the algorithms that are used in these tools. Testing is carried out
using data types from texts that were used in the work on spell-checking.

2. Methodology

2.1. NeuSpell

One methodology that was tested was NeuSpell, which is based on a neural
network and is a spell-checking tool written in the Python language. Two of them
are commercially available non-neural models, namely GNU Aspell and
JamSpell. The following four models appear to be published neural models for
spelling correction: SC-LSTM, CHAR-LSTM-LSTM, CHARCNN-LSTM, and
BERT. And the remaining four are updates that have been added to existing ones
for improvement. This is ELMo and BERT combined with a bi-LSTM semi-
character model on input and bi-LSTM on output. That is, SC-LSTM has been
enhanced with deep contextual representations from pre-trained ELMo/BERT to
capture context around a token and add them to semi-character attachments.
Here, Long Short Term Memory (LSTM) is a kind of neural network that is
capable of learning algorithms for long-term dependencies. The LSTM module
consists of cells and a gateway that learns, disables, or stores information from
each of the modules. In NeuSpell, these neural networks are trained and,
correcting errors, marks them in sequence. [6]

In Fig 1 we can see several text denoising strategies. They use a lookup
table for this, and for character-level noise, they use a context-based character-
level confusion dictionary. After running the "typo - correction” function from
various database sources to fill in the table.

17

SDU Bulletin: Natural and Technical Sciences 2022/1 (58)

My freind kame to London for na excurion

M|y f |rein| d klamle = @ .eeeeees e |xcurio| n

Semi-character
Representations

Deep Contextual
o — Representations
Bi-LSTM
! ! ! [
Softmax Softmax Softmax Softmax
. ! l l
My friend came to London for an excursion

Fig 1. Structure of work Neuspell

2.2. SymSpell

The second model is the Symmetric Speech Correction Algorithm
(SymSpell). Ye Kyaw

Thu show using studied the application of the algorithm SymSpell. [7] Wolf
Garbe proposed SymSpell algorithms for implementation in C#. [8] Firstly, to
detect errors in a word, the language model of N-grams is used to check the
dictionary. SymSpell works according to the following principle: it generates
words with a modification of the edit distance algorithm, namely, only a delete
operation, no transpositions, replacements, or insertions, and then connects them
to the original element. SymSpell's speed depends on the Symmetric Delete
spelling algorithm, and memory requirements are controlled by prefix indexing.
For example, using the Levenshtein algorithm, to generate words with 5 letters,
we have to try approximately 3-4 million spelling errors within the edit distance.
And because SymSpell only uses deletion, there will be 25 deletion options to
search for. And also this tool uses a hash table for quick access to the index
during the search. For example, we can take the words "test". When typing on
the keyboard, we made a mistake in one letter, that is, instead of "test" we wrote
"temt". In the hash table for the word "test" the words are stored by index: eat,
tst, tet, tes. And for deletion in the word «temt", it will be "emt, tmt, tet, emt".
We can find a similar "tet" here and the algorithm will change the word "temt"
to "test".

2.3. HunSpell

The last tool that was tested was Hunspell implemented using the Java
programming language. Here it works according to the following principles: [9]

« Parse the document by tokenizing, that is, extracting the words that will
be checked

18

SDU Bulletin: Natural and Technical Sciences 2022/1 (58)

» Analyze each word by breaking it down into root and affix conjugations.

+ Dictionary lookup if the combination of word and affix is valid for the
language

 Suggest corrections by looking up similar or correct words in a dictionary
for incorrect words.

3. Result

In this work, models of ready-made auto corrector solutions were
considered that satisfy three criteria:

« implementation language,

* license type,

* update ability.

Some datasets were used to evaluate the model. The accuracy was tested
both on several artificial data sets and real ones such as Wikipedia. The table
below shows the results for English text.

Table 1: Result of an open-source toolkit

Error Fix Rate Precision Recall Speed
Rate
JamSpell |2.60% 81.16% 100.00% 81.16% 1764
Hunspell |9.80% 57.25% 70.83% 58.12% 284
NeuSpell |0.80% 89.00% 100.00% 88.58% 1200
SymSpell |5.70% 71.22% 92.00% 76.00% 2480

» Error Rate: the number of errors that were in the text after performing
automatic correction

 Fix Rate: the number of fixed errors

« Precision, Recall: correctness

 Speed: Number of words per second

To check the correctness, namely through Recall, we should use this
formula:

Spellchecker _true

Recall =
et Total list true

Total_list_true is the total number of correct words and Spellchecker_true
is the number of words that the autocorrect considers correct. To determine the
Precision, you need the number of words that the autocorrect considers wrong
(Spell_checker_false), divided by the total number of wrong words
(Total_list_false).

19

SDU Bulletin: Natural and Technical Sciences 2022/1 (58)

Spellchecker _false
Total _list_false

Precision =

In Table 1, we can see that one of the options for speeding up performance
Is the SymSpell algorithm, it works 1.5-2 times faster than others. Because the
algorithm searches for all lines within the maximum edit distance in a very short
time. And the most effective for correcting errors is NeuSpell. Unlike other spell
checkers that have been reviewed, this model accurately captures the context of
misspelled words. According to the result of this experiment, the model with
neural network proposed in this paper gains a higher precision than the other
three spell checkers, with about 7.42% higher than JamSpell, but speed worse
than JamSpell and SymSpell, because the algorithm uses ten models that consist
JamSpell too.

IV. Conclusion

In this article, we evaluated the spell checker methods and reviewed the
available out-ofthe-box English spell checker tools. When developing the ready
error correction systems, such as t the reliability of the text, the frequency of
errors, and the level of error were taken into account. The evaluation
performance took advantage of the NeuSpell model and showed that this model
Is better protected against hostile attacks than other off-the-shelf tools that have
been developed using machine learning for spell checking. And also to quickly
find and fix errors, it is better to use the SymsSpell algorithm, since it finds all
the lines in a very short time.

In future work, I want to take advantage of open-source spell-checking tools
and create my algorithm in which the new algorithm will find fast and correct
results. As well as using these methods to create an efficient database. In the
future, | would also like to complement NLP (Natural Language Processing)
with Al (Artificial Intelligence) to create a website and mobile app that does
word prediction.

References

1 Joachim Wagner, Jennifer Foster, and Josef van Genabith, "A
comparative evaluation of deep and shallow approaches to the automatic
detection of common grammatical errors.”, In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning (EMNLP-CoNLL),
pages 112-121, 2007.

2 Mohammed Nejja, Abdellah Yousfi, "Context's impact on the automatic
spelling correction”, In International Journal of Artificial Intelligence and Soft
Computing, 2017.

3 Pirinen, T.A., Lindén, K, “State-of-the-art in weighted finite-state spell-
checking”, In Computational Linguistics and Intelligent Text Processing, 2014.

20

SDU Bulletin: Natural and Technical Sciences 2022/1 (58)

Sai Muralidhar Jayanthi, Danish Pruthi, Graham Neubig, "NeuSpell: A Neural
Spelling Correction Toolkit", In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations,
2020.

Ei Phyu Phyu Mon, Ye Kyaw Thu, Than Than Yu, Aye Wai Oo, “SymSpell
4Burmese: Symmetric Delete Spelling Correction Algorithm (SymSpell) for
Burmese Spelling Checking”, In 2021 16th International Joint Symposium on
Artificial Intelligence and Natural Language Processing (iSAI-NLP), 2021.
Wolf Garbe, “SymSpell vs. BK-tree: 100x faster fuzzy string search & spell
checking”. https://github.com/wolfgarbe/SymSpell, 2017
Cran.R-project[Online], “The hunspell package: High-Performance Stemmer,
Tokenizer, and Spell Checker for R”, https://cran.r-
project.org/web/packages/hunspell/vignettes/intro.html [Last update available
2020.12.09]

21

