SDU Bulletin: Natural and Technical Sciences 2022/1 (58)

IRSTI 50.05.13

Zhazira Koppagambetova!, Kamilla Umirserikova?
tUniversity of Warwick, Coventry, United Kingdom
2Suleyman Demirel University, Kaskelen, Kazakhstan

TDD: WHEN NEEDED, AND MOST IMPORTANTLY, WHEN NOT

Abstract. Software testing is a procedure that allows to confirm or deny the
performance of the code and the correctness of its work. Thus, testing plays an
important role in software development, because the quality of the code and
productivity depend on the choice of the testing method. Unit testing is the most
common testing method that aims to test each piece of code. Among the various
approaches to unit testing, Test-Driven Development (TDD) and Test Last
Development (TLD) are the most common. Therefore, this paper discusses 2
main methods of software development: TDD and TLD. This work is aimed to
analyze the effectiveness of TDD as opposed to TLD. As a result, the
effectiveness of TDD slightly exceeds TLD. Granularity, uniformity, and
refactoring showed positive key results in terms of code quality and
performance, while sequencing did not significantly affect any of these factors.
Thus, during software development, it is worth applying separate TDD
processes, such as granularity, uniformity, and refactoring.

Keywords: Unit Test, Test-Driven Development, Test Last Development,
External quality, Developer Productivity.

**k*k

Anparna. barnapnamainslk xkacakTaMaHbl TECTUICY-0YJ1 KOJITBIH KYMBICHIH
JKOHE OHBIH JYpbhIC JKYMBIC ICT€yiH pacTay HEMece JKOKKAa IIbIFapy
nporenypacsl. Ocblaiiina, TecTiey OaraapiaManbIK jKacaKTaMaHbl d3ipiieyie
MaHBI3/IbI POJI aTKapajibl, ©UTKEHI KOATHIH Carachkl MEH OHIMJUIII TeCTuIey
oMiciH TaHJayFa OalmaHbICTEL. BIOKTHI TeCTiNey-0yI1 €H KON TapaiFaH TecTiiey
9/1iCl, OHBIH MaKcaTbl KOATHIH op OeJIiriH Tekcepy 0oibln TaObutaabl. BIOKTHI
TECTUICY/IH OpTYpJi TOCUIAEPIHIH ILIIHAE €H Kol TaparaHAapbl-TecTiieyre
Heriznenren gamy (TDD) xone Tectinmeyre HerizaenreH namy (TLD).
ConnpikTas, Oy Makanasia OarnapiaaMaiblK)KacaKTaMaHbl 931pJeyAiH 2 HeTi3ri
omici kapacteipsuiansl: TDD sxone TLD. byn sxkymeic TLD-re kaparanma TDD
TUIMIUTITIH TangayFa Oarpittanrad. Hotmxkecinae TDD tuimainiri TLD-nen
can acanabl. Erkeli-terskeini, O1pKeIKUIIK koHe peaKTOPUHT KOJITHIH Canachl
MEH OHIMJIUII TYPFBICBIHAH OH HOTH)KE KOpCeTTi, all PeTTUIK OChI
dakTopnapaplH eHIKalChICbIHA aWTapiblkTail ocep erneni. Ochliaiiiia,

22

SDU Bulletin: Natural and Technical Sciences 2022/1 (58)

OarapiiamMalIbIK KacaKTaMaHbl 93IpJiey Ke31HIEC erKer-TerKenii, OIpKemKiTiK
XKoHE pedaKTOpHUHT CHSIKTHI xkeke TDD mpouectepid KoJIJaHFaH KeH.

Tyiiin ce3mep: OJIOKTBI TECTINCY, TECTUICYre HETI3NICITCH JaMy, COHFBI
JlaMy, CBIPTKBI cara, o3ipJaeylIiHiH OHIMIUTIrI.

*k*k

AHHoTauusi. TecTupoBaHHe MPOrpaMMHOTO OOECIIEYEHUsT — 3TO
npouenypa, MO3BOJISIOLIAS MOATBEPIUTH W ONPOBEPIrHYThH
paboToCoCOOHOCTh KOJa M MPAaBWIIBHOCTH €ro pabotbl. Takum obOpazom,
TECTUPOBAHUE WrpaeT BaXHYIO pOJb B pa3paboTke MOPOrpaMMHOIO
o0Oecrne4yeHus, OCKOJIbKY KauecTBO KOJa U IPOU3BOJUTEIBHOCTb 3aBUCAT OT
BbIOOpa MeTOJa TEeCTUPOBaHUA. MOIyJIbHOE TECTHUpPOBaHHE — 3TO Haumbojee
pacipoCTpaHEHHBI METOJ] TECTUPOBAHUS, LIE€IbI0 KOTOPOTI'O SIBJISIETCSA IIPOBEPKA
Kaxaoro ¢parmenta koma. Cpenu pa3IUYHBIX MOIXOJOB K MOJIYJIEHOMY
TECTUPOBAHUIO HauOoJiee pPACIPOCTPAHEHHBIMU SBIIAIOTCS pa3paboTKa Ha
ocHoBe TectupoBanus (TDD) wu mnocneansisi pa3paboTka Ha OCHOBE
tectupoBanusi (TLD). Ilostomy B pgaHHOH cTaTbe paccMaTpuBaroTCs 2
OCHOBHBIX MeTOJIa pa3paboTku mporpaMMHoro obecrneuenusi: TDD u TLD. Ota
pabota HampasneHa Ha aHanu3 3¢dexruBaoctn TDD B orimmume ot TLD. B
pesynbrate 3¢ dexktuBHocTh TDD HemHoro mpesbimiaer TLD. [leranuzarnus,
ennHOOOpa3ue © PePaKTOPUHT TIOKA3aIM IOJIOKHUTCIBHBIC —KITFOUYCBBIC
pe3yabTaThl C TOUYKU 3PEHUS KAUeCTBA U MPOU3BOJIUTEIBHOCTH KOJ1a, B TO BPEMs
KaK IOCJIEZI0BATEIbHOCTh HE OKa3aia CyLIECTBEHHOIO BIMSIHUS HU Ha OJUH U3
aTuX (haktopoB. Takum 06pazom, pu pazpaboTke MporpaMMHOro 00ecreUeHHS
CTOMT MPUMEHATHh OTIEIbHbIE Mpoueccbl TDD, Takue Kak [aeranu3anus,
eanHo00pasue 1 pepaKkTOpUHT.

KuroueBble ci10Ba: MOy IbHOE TECTUPOBAHUE, pa3pabOTKa OCHOBAHHAS HA
TECTUPOBAHUU, TIOCJIETHSIS pa3paboTka, BHEIIHEE KauyecTBoO,
IIPOU3BOIUTENILHOCTh pa3paboTurKa.

I. Introduction

The importance of testing in software development is undeniable, as it
contributes to improving the reliability, quality, and performance of the
software[1]. It also allows the developer to check whether the software is
working correctly and make sure that it is doing what it is intended to do[2].
Thus, nowadays there is a wide variety of testing techniques[3], so the question
of choosing an effective testing method remains relevant at all times.

One of the important aspects of software testing is the ability to fix software
errors (bugs) at the initial stage of development, which reduces the risk of defects
in the final product[3]. Consequently, the earlier the process starts, the earlier
bugs are detected, and the lower the cost of fixing them [4].Therefore, among
the various types of software testing, unit testing is the most common, since it is

23

SDU Bulletin: Natural and Technical Sciences 2022/1 (58)

aimed at testing small parts of the code, such as functions or methods of a
class[5]. Unit testing also has various approaches, among which the most
fundamental are Test-Driven Development (TDD) and Test Last Development
(TLD) [5].

As a result, the purpose of this literature review was to evaluate the
effectiveness of the application of Test-Driven Development, as well as
analyzing and determining its benefits and challenges.

This paper has the following structure: Section 2 presents general insight
into Unit Testing, Test-Driven Development (TDD) and Test Last Development
(TLD). Also, a comparison of TDD and TLD is reflected in this section. The
review of various research on the effectiveness of the TDD is reported in Section
3. Section 4 concludes the paper.

2. Software Development Techniques

This literature review is focused on the software development methods,
therefore, in the following sections, definitions and the basic principles of Unit
Tests, Test-Driven Development (TDD), and Test-Last Development (TLD) are
given, the main differences of which are the rigidity of the structuring and the
sequence of execution [5].

2.1 Unit testing

The importance of providing quality code and improving development
efficiency increases as the scale and complexity of software increases [6],
consequently one of the most important stages of software development is
software testing [1]. The main task of software testing is to find defects in the
software in the early stages for the purpose of decreasing software development
costs and increasing the reliability of software [4]. Finding the software defects
means correct and fast identification of the root of the error, and this can be
achieved through unit testing [7]. Therefore, unit testing with the ability to check
the correctness of a single unit of functional code is one of the main approaches
to software testing [5].

Writing tests for each individual function or method is the main concept of
unit testing. Testing is carried out with high granularity, since small parts of the
system are tested, rather than the entire system as a whole [4]. This allows to
quickly check whether the next code change has led to regression [7], that is, to
the appearance of errors in already tested places in the program, and also makes
it easier to detect and eliminate such errors [8]. Among the various applications
of unit tests, Test-Driven Development and Test Last Development are two of
the most basic [5].

2.2 Test-Driven Development (TDD)

Test-Driven Development is a software development strategy based on
repeated short development cycles [9]. The essence of TDD is that first a test is
written that covers the desired changes. Next, a program code is written that
executes the desired behavior of the system and allows the test to pass. After
that, the written code is refactored with constant testing of passing tests [8]. In

24

SDU Bulletin: Natural and Technical Sciences 2022/1 (58)

other words, the philosophy of TDD is that tests are a specification of how the
program should behave. This method is also known as the red-greenrefactor
cycle [4], which was proposed by Kent Beck in 2003.

TDD application involves the following three steps:

1. Red: writing a failing test for a small piece of functionality.

2. Green: implementation of the functionality that successfullypasses the
test.

3. Refactor: refactoring old and new code to keep it in a wellstructured and
readable state.

START

WRITE TEST
CODE

‘('ODE NOT MEETING
REQUIREMENTS

ERROR FREE CODE
AND CANITBE
UPGRADED?

WRITE CODETO
1 MEET
REQUIRMENTS

CODE MEETING
REQUIREMENTS

Figure 1: Test-Driven Development Red Green Refactor Cycle [4].

2.3 Test Last Development (TLD)

In contrast to Test Driven Development, developers follow the classic
method of software development, specifically Test Last Development (TLD)
[10]. At the stage of requirements analysis, based on which the code should be
developed, there is clear documentation of all the requirements, functionality,
and states [4]. After the software plan (technical task) for all steps of the software
development process is approved, the code

25

SDU Bulletin: Natural and Technical Sciences 2022/1 (58)

Requirement
Analysis

Develop Code

Test the
Developed Code

Figure 2: Flowchart of Traditional Testing [4].
is developed and, after the developer is confident that he has fulfilled all the
technical conditions, tests are written to check whether the code meets all the
requirements [9].

2.4 Comparing TDD and TLD

Micro-iterative test-coding cycles define the TDD’s fine-grained approach
[9] - in contrast to traditional approaches, where “ systems are generally built
up-front and then tested”, define it as a coarse-grained approach [11]. The
traditional method of development (TLD) involves writing test codes at the last
step of software development, that is, after writing the production code [11, 12].
As opposed to TLD, in TDD first of all, a small test code is written to check the
required functionality. At this stage, the test will fail because the functioning
code has not been written yet, but at the further stages of development, this test
will be used to check the correctness of the code. Developing the code itself is
the third step. To check whether the existing functionality of the code
corresponds to the desired one, the former one is tested for all cases. An indicator
that the existing code is working correctly is the successful passing of the code
on all tests [4,5,8].

The next important step in TDD is code refactoring, that is, modifying the
code in various ways, such as removing duplicates or improving the design
structure, the main goal of which is the absence of behavioral changes in the
software [9, 12]. Accordingly, refactoring provides high-quality and easily
readable code with a well-designed structure that allows the software developers
to make new changes in the code without breaking and changing the functional
requirements of the final product [8].

It is necessary to continue running the existing code for all tests until there
is no need to change the functionality of the code. Then and only then,
refactoring should be stopped [4]. Refactoring is an additional, but at the same

26

SDU Bulletin: Natural and Technical Sciences 2022/1 (58)

time an important stage in software development, however, this stage is skipped
in the traditional method of development (TLD) [12].

Thus, the TLD method assumes the presence of a program plan, thought out
in advance for each stage of development, which is consistently implemented
with testing at the last stage [10]. Whereas TDD obeys a more flexible and
iterative development approach, where continuous code development,
refactoring, and testing are observed [4].

3. Literature review

This section highlights the main findings of the authors of various studies
on the application of TDD in practice.

In their research work, Yogesh and Vimala (2020) reflected the main
aspects of TDD by identifying methods and internal processes and comparing it
with the traditional testing method. Thus, the authors of the study concluded that
the implementation of TDD in practice was effective since TDD improved
software performance by writing test codes that increase test coverage as well as
reduce errors. Yogesh and Viamala noted that the primary writing of test code
in TDD, followed by writing production code, contributed to a deeper logical
understanding of the functionality of the code. Thus, authors pointed out the
following advantages of using TDD: the absence of ambiguity in the code due
to writing test codes, the ability to make changes in the code at any time during
software development without breaking or changing the behavior of the final
product, and a sharp decrease in the number of errors. One of the drawbacks that
were mentioned by Yogesh and Vimala was the complexity of the application of
TDD at the initial use.

Difficulties in adapting and applying TDD were also observed by Santos et
al. (2018), whose research work was based on an analysis of experimental tasks
performed by developers and a survey at the end of the experiment. The
experimental task consisted of three levels, namely:

‘Bowling-Score Keeper’, ‘Mars-Rover’ and ‘Spread-Sheet’, wherein each
of the levels developers needed to apply the TDD, adhering to all sequential
development steps, as well as the traditional development method. Thus,
developers with different skill levels were randomly divided into 3 groups to
perform an experiment. In an analytical analysis, researchers first provided
descriptive statistics (mean, standard deviation, and median) of the traditional
method and the TDD. Then they analyzed the experimental items using a Linear
Mixed Model. As a result, they concluded that the effectiveness of the
application of the traditional method and TDD was the same.

Unlike Yogesh and Vimala, Fucci et al. (2017) studied and analyzed the
impact of individual unique TDD processes such as sequencing, granularity,
uniformity (order, length, variation), and refactoring effort on the productivity
and quality of code, rather than the entire TDD technique. The analysis was
carried out based on 82 data points provided by 39 professionals, each of which
indicated the process used by the professionals while performing specific

27

SDU Bulletin: Natural and Technical Sciences 2022/1 (58)

development tasks. Fucci et.al. provided the following observations based on the
results of the regression analysis performed: granularity and uniformity had a
positive effect on improving code quality and productivity in general. While
sequencing the order in which the test and production code was written did not
have a significant impact. And refactoring, in turn, negatively affected both
quality and productivity. Thus, the claimed merits of TDD were due to its fine-
grained approach, which allows monitoring of the sequential development flow,
rather than its distinctive first test dynamics.

Moe and Oo (2020) also used regression analysis to assess the effectiveness
of TDD. In their research work, regression analysis was used to analyze the
relationship between 2 dependent variables, namely QLTY (Quality) and PROD
(Productivity), and 1 independent variable, TEST. QLTY denoted the percentage
of passed tests for implemented solutions to problems, and PROD was defined
as the percentage of solutions completed tasks. According to the analysis, QLTY
and TEST showed a positive trend, which was characterized in the relationship
between the number of tests and the quality of the external code. In addition, in
the relationship between TEST and PROD, there was a certain negative
relationship, which was characterized by a certain decline in developer
productivity when using TDD methods. Thus, the researchers concluded that, in
contrast to the traditional method, TDD took 16% more time, and the number of
writing test codes increased by 52%. This affected the productivity of the
developer and the quality of the written code. Researchers agreed with the
generally accepted opinion that TDD helps to reduce defects in functional code,
which positively affects the quality of the code, while they did not exclude some
decline in developer productivity.

Papis et al. (2020) also aimed to assess the impact of development methods
(TDD and TLD) on code and testing quality. In a threeweek experiment, 19
participants of different levels participated in solving various blocks of tasks
using TDD and TLD. The researchers chose Linear Models (LMM - Linear
Mixed Model) as an analysis tool. Based on the tasks performed by the
developers, the researchers presented the following observations: TDD showed
1.8 fewer errors than TLDs and test quality was 5% higher for TDD than for
TLD. As with previous studies, they noted that TDD was difficult to use,
especially for beginners. Hence, TLD rules were easier to follow than TDDs.

Karac and Turhan (2018), in their work, "What We (Really) Know About
Test-Driven Development,” questioned the effectiveness of TDD by analyzing
various studies. They argued that there was not strong enough evidence that TDD
was better than another development method. Thus, they emphasized that while
choosing a development method, it was necessary to proceed from the expected
results. Also, the authors of the work noted that working with short cycles of
code, namely with small, clearly formulated tasks, had a positive effect on
productivity than the order of test execution.

28

SDU Bulletin: Natural and Technical Sciences 2022/1 (58)

Teschner (2020), as well as Karac and Turhan, strongly agreed that “simply
writing tests for the sake of it will not automatically increase the value of
production code. Tests should concentrate on the business logic and expected
behavior”. In the research carried out by Teschner, code coverage was traced by
developing a project in C ++, based on the meson assembly system, the built-in
functionality of which allows to support software testing. The project was based
on a library of linear algebra for solving a linear system of equations using the
iterative Conjugate Gradient (CG - Conjugate Gradient) method. As a result, he
claimed that with the use of TDD processes, code coverage was increased, as
well as code quality was improved. Thus, Teschner confirmed that by using TDD
processes, the probability of missing errors by mistake was minimal, and the
software met the stated requirements. Like other researchers, Teschner found
that personal aptitude was a major barrier when writing test codes for production
code. Hence, he concluded that writing effective test code primarily depended
on the developer’s level of competence. Teschner disagreed with the fact that the
increase in development time was a disadvantage of the TDD method, on the
contrary, he argued that the increased time was compensated by the decrease in
the time required for debugging.

4. Conclusion

Analyzing the effectiveness of the use of TDD as opposed to TLD, it
appeared that TDD contributes to improving the quality of software and
increasing customer satisfaction. The latter is due to the extended coverage of
tests when using TDD, the developer can be sure that the software works as
expected, meets all the requirements, and also reduces the possibility of making
mistakes in the functional code. It should be noted that using TDD, in contrast
to the traditional development method, development time increases, since TDD
implies writing test code for each separate module of the program code.
However, the increased time is compensated by the time spent on debugging
diagnostics.

Observing the positive effect of using TDD, it is worth noting that the
effectiveness of its use does not greatly exceed the traditional development
method. The distinctive results in terms of code quality and performance are
granularity, uniformity, and refactoring, while sequencing does not affect any of
these factors. Based on the analyzes of various researchers, it can be concluded
that the efficiency of TDD is explained by the approach to the task, namely,
finegrained, stable steps, and not by the order of execution of individual TDD
processes. Therefore, it is advised for developers to focus on dividing tasks into
as small and uniform steps as possible. Thus, maximum efficiency is achieved
during the performance of individual processes such as granularity, uniformity,
and code refactoring, rather than the entire TDD method.

29

10

11

12

13

14

SDU Bulletin: Natural and Technical Sciences 2022/1 (58)
References

Borle, N., Feghhi, M., Stroulia, E., Grenier, R. and Hindle, A. (2018),
[journal first] analyzing the effects of test driven development in github,
in ‘2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE)’, pp. 1062—-1062.

Alkawaz, M. H. and Silvarajoo, A. (2019), A survey on test case prioritization
and optimization techniques in software regression testing, in ‘2019 IEEE 7th
Conference on Systems, Process and Control (ICSPC)’, pp. 59—64.

Umar, M. A. (2020), ‘Comprehensive study of software testing: Categories,
levels, techniques, and types’.

Yogesh, T. and Vimala, P. (2020), Test-driven development of automotive
software functionality, in ‘2020 Third International Conference on Smart
Systems and Inventive Technology (ICSSIT)’, pp. 1162-1165.

Papis, B. K., Grochowski, K., Subzda, K. and Sijko, K. (2020), ‘Experimental
evaluation of test-driven development with interns working on a real industrial
project’, IEEE Transactions on Software Engineering pp. 1-1.

Sun, B., Shao, Y. and Chen, C. (2019), Study on the automated unit testing
solution on the linux platform, in ‘2019 IEEE 19th International Conference on
Software Quality, Reliability and Security Companion (QRS-C)’, pp. 358-361.
Laghari, G. and Demeyer, S. (2018), Poster: Unit tests and component tests do
make a difference on fault localisation effectiveness, in ‘2018 IEEE/ACM 40th
International Conference on Software Engineering: Companion (ICSE-
Companion)’, pp. 280-281.

Kampmann, A. and Zeller, A. (2019), Carving parameterized unit tests, in ‘2019
IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion)’, pp. 248-249.

Moe, M. M. and Oo, K. K. (2020), Consequences of dependent and independent
variables based on acceptance test suite metric using test driven development
approach, in ‘2020 IEEE Conference on Computer Applications(ICCA)’, pp.
1-6.

Nanthaamornphong, A. and Carver, J. C. (2018), ‘Test-driven development in
hpc science: A case study’, Computing in Science Engineering 20(5), 98-113.
Teschner, T.-R. (2020), ‘A practical guide towards agile test-driven
development for scientific software projects’.

Santos, A., Spisak, J., Oivo, M. and Juristo, N. (2018), Improving development
practices through experimentation: An industrial tdd case, in ‘2018 25th Asia-
Pacific Software Engineering Conference (APSEC)’, pp. 465-473.

Fucci, D., Erdogmus, H., Turhan, B., Oivo, M. and Juristo, N. (2017), ‘A
dissection of the test-driven development process: Does it really matter to test-
first or to test-last?’, IEEE Transactions on Software Engineering 43(7), 597—
614.

Karac, I. and Turhan, B. (2018), ‘What do we (really) know about test-driven
development?’, IEEE Software 35(4), 81-85.

30

